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Как уже упоминалось выше, в последнее вре-
мя значительно возрос интерес к композитам 
с близкой к нулю диэлектрической проницаемо-
стью [1]. Рассмотрим возможности получения 
таких композитов. Простейшим композитом 
является диэлектрическая матрица, заполнен-
ная с объемной концентрацией р металлически-
ми (в нашем случае серебряными) шариками. 
Эффективная диэлектрическая проницаемость 
композита может быть оценена в рамках теории 
М. Гарнетта (см., например [2]) как
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где εAg – диэлектрическая проницаемость сереб-
ряных включений, εd – диэлектрическая про-
ницаемость диэлектрической матрицы. 

Хотя у серебра есть потери, сначала мы ими 
пренебрежем. В этом случае теория Гарнетта 
предсказывает два качественно разных поведе-
ния εeff(p) [3]. При частотах, когда –2εd < εAg < 0, 
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которой εeff обращается в нуль. 

На меньших частотах, когда εAg < –2εd < 0, 
поведение εeff(p) качественно меняется. Теперь 

уже величина ε–
ef
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f(p) принимает значение, рав-

ное нулю, при Ag
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полюс [4–5]). Как следствие εeff(p) ни при каких 
концентрациях в нуль не обращается. В этом 
случае при учете потерь полюс превращается 
в резонансную кривую (pис. 1),  а точка,  где 
Reεeff(p) = 0 есть, но потери там очень велики. 
Иными словами, искомого решения нет.
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Рис. 1. Действительная (1) и мнимая (2) части 
эффективной диэлектрической проницаемости 
как функции объемной концентрации серебря-
ных включений в диэлектрической матрице с 
εm = 1 на длине волны λ = 500 нм, соответствует 
εi = –9,8 + 1,5i.
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Для уменьшения потерь имеет смысл умень-
шить концентрацию металла. Для этого можно 
использовать включение в виде диэлектриче-
ского  шара  (core)  в металлической оболочке 
(shell) с отношениями радиусов q = r3

core/r3
shell. 

Оценим εeff(p) такого композита среды по форму-
ле Гарнетта, заменив включения однородными 
шариками, имеющими ту же поляризацию [6]
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как составное включение. Иными словами, шар 
в оболочке рассматривается как однородный 
шар с диэлектрической проницаемостью 
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Тогда  эффективная  диэлектрическая  прони-
цаемость композита (где εm – диэлектрическая 
проницаемость металла) определится как
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В первую очередь мы должны найти функ-
цию p0(q), которая дает решение p0 уравнения 
Reεeff(p, q) = 0 при заданном q. Следующим ша-
гом минимизируем Imεeff(p0(q), q) с ограниче-
ниями 0 ≤ q ≤ 1, 0 ≤ p0(q) ≤ 1. Оказывается, что 
процедура поиска минимума всегда дает p0 = 1.

Итак, при εAg < –2εd < 0 композит есть ди-
электрическая  матрица, наполненная  метал-
лическими включениями с концентрацией q. 
Второй композит представляет собой серебря-
ную пену с диэлектрическими пузырями с кон-
центрацией q (концентрация серебра 1 – q). 

В первом случае композит с низкими потеря-
ми может быть сделан, если –2εm < ReεAg < 0, 
что соответствует некоему интервалу длин волн 
{λ0, λ–2εm

}, где ReεAg(λ0) = 0 и ReεAg(λ–2εm
) = –2εm. 

К сожалению, приближаясь к λ–2εm
, мы наблю-

даем увеличение потерь. Резкое увеличение по-
терь появляется после λ–2εm

, где возникает по-
люс  эффективной  диэлектрической проница-
емости. 

Если оболочка сделана из серебра, то плаз-
монный резонанс на полости достигается при 
ReεAg(λ–0,5εm

) = –0,5εm. В интервале {λ0, λ–0,5εm
} 

наблюдается увеличение потерь. Для длин волн 
больше λ–0,5εm

 наблюдается уменьшение потерь. 
В итоге приходим к случаю, когда потери ком-
позита просто пропорциональны концентрации 
серебра (рис. 2). 
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Рис. 2. Зависимости потерь композита от длины 
волны в случае металлических шариков (1) и 
пены (2).


