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Аннотация
Предмет исследования. Были рассмотрены методы аугментации изображений видимого спек-

тра в задачах классификации тепловизионных изображений. Цель работы. Исследовать спосо-
бы повышения обобщающей способности нейронных сетей, обученных на изображениях види-
мого спектра, для распознавания тепловизионных изображений. Метод. Существующие наборы 
тепловизионных изображений имеют ограниченный размер, и для получения таких данных 
требуется дорогостоящее оборудование. В то же время, классификаторы, обученные на данных 
видимого спектра, показывают низкую точность классификации на данных других оптических 
диапазонов. Существуют различные методы обогащения наборов тепловизионных данных для 
решения задачи распознавания объектов, например, с использованием синтезированных изо-
бражений, однако, такие подходы требуют использования тепловизионных изображений в той 
или иной форме, что накладывает ограничение на возможности их применения. Между тем, 
существуют художественные методы моделирования сцен дальней инфракрасной области спек-
тра на основе изображений видимого спектра, с помощью которых визуальное сходство дости-
гается, например, за счёт коррекции контраста и преобразования значений цветовых каналов. 
Нами был предложен и исследован метод предварительного преобразования изображений, чтобы 
определить, способна ли нейронная сеть извлекать из модифицированных изображений види-
мого спектра признаки, достаточные для обобщения на тепловизионные данные. Основные ре-
зультаты. Благодаря подобранному методу аугментации и подготовки данных видимого спектра, 
уровень ошибок классификации сократился с 17% до 6%. Практическая значимость. Наше ис-
следование показывает, что предложенный метод обучения позволил повысить точность клас-
сификации тепловизионных данных без использования изображений соответствующего спектра 
в обучающей выборке. Такой подход может быть использован как метод обогащения данных, на-
пример, если имеющиеся ресурсы для получения тепловизионных данных ограничены.

Ключевые слова: классификация тепловизионных изображений, методы аугментации дан-
ных, тепловизионный инфракрасный диапазон, обучение нейронных сетей
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Abstract
Subject of the study. Methods of visible spectrum images augmentation in the tasks of thermal 

images classification were considered. The aim of the study is to investigate the ways to improve 
the generalization ability of neural networks trained on visible spectrum images to recognize the 
thermal images. Method. Existing sets of the thermal images have limited size, and obtaining such 
data requires expensive equipment. At the same time, the classifiers trained on visible spectrum 
data show low classification accuracy on data of different optical spectra. There are various methods 
of enriching the thermal datasets to solve the problem of object recognition, for example, the use 
of synthesized images, however these approaches require the use of thermal images in this or that 
form, which imposes restriction on the possibilities of their application. Meanwhile, there are artistic 
methods of modeling far-infrared scenes based on visible spectrum images that allow to achieve visual 
similarity, for example, by means of contrast correction and transformation of color channel values. 
We have proposed and investigated a preliminary image transformation method to determine whether 
the classifying neural network is capable of extracting features from modified visible spectrum images 
sufficient to generalize to thermal data. Main results. Owing to the developed method of augmentation 
and preparation of the visible spectrum data, the level of classification errors was reduced from 
17% to 6%. Practical Significance. Our study shows that the proposed method of training made it 
possible to improve the classification accuracy of the thermal imaging data without using the images 
of the appropriate spectrum in the training sample. This approach can be used as a method of data 
enrichment, for example, if the available resources for obtaining thermal imagery data are limited.
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neural network training
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ВВЕДЕНИЕ
В исследованиях, связанных с тепловизион-
ными (далее ТПВ) изображениями, очень ак-
туальны идеи переиспользования и адаптации 
данных видимого (далее ТВ) спектра с целью 

обогащения наборов данных тепловизионных 
изображений. Существующие в открытом до-
ступе базы данных с попарными фотография-
ми видимого и тепловизионного спектра огра-
ничены в размерах [1, 2–5], для получения 
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таких данных требуется дорогостоящее обору-
дование [2, 4], и при этом они не лишены недо-
статков (низкая контрастность и зернистость 
на тепловизионных изображениях, вспыш-
ки, шумы, размытие на изображениях види-
мого спектра [1, 6, 7]). При этом известно, что 
классификаторы, обученные на данных види-
мого спектра, демонстрируют низкую точность 
классификации на данных, зарегистрирован-
ных в ином оптическом диапазоне, напри-
мер, в ближнем инфракрасном спектре [6, 8]. 
В данном исследовании мы рассмотрим про-
блемы конфигурации и модификации обуча-
ющей выборки, состоящей из изображений 
видимого спектра для решения задачи клас-
сификации тепловизионных изображений, 
методы аугментации для повышения качества 
распознавания. 

Существуют различные методы обогаще-
ния наборов тепловизионных данных для ре-
шения задач распознавания объектов, напри-
мер, за счёт изображений, синтезированных 
с помощью генеративных состязательных се-
тей [7–9], и с помощью архитектуры кодиров-
щик/декодировщик, обучаемой с использова-
нием ошибки реконструкции [10–12, 14]. При 
этом, для достижения высокой достоверности 
полученных данных требуются пары изобра-
жений, снятых в видимом и инфракрасном ди-
апазонах (иногда не идентичных по содержа-
нию сцены [9]). Также представлены работы, 
исследующие возможности распознавания те-
пловизионных изображений на основе перено-
са признаков (transfer learning) [12, 13] (сеть, 
обученная на видимом спектре, подстраивает-
ся к ТПВ данным). Для всех представленных 
подходов требуется использование тепловизи-
онных изображений в том или ином виде, что 
накладывает ограничение на возможности их 
использования. При этом существуют худо-
жественные техники по моделированию изо-
бражений ближнего инфракрасного света на 
основе изображений видимого спектра, с ко-
торыми за счёт корректировки контрастности 
и преобразований значений цветовых каналов 
достигается видимое сходство [15]. Такие ме-
тоды можно использовать в качестве аугмен-
тации данных [16]. 

Целью нашей работы было исследовать спо-
собы повышения обобщающей способности 
нейронных сетей, обученных на изображениях 
видимого спектра, для распознавания тепло-

визионных изображений. В частности, мы ис-
следовали вопросы использования цветовой и 
геометрической аугментации, а также особен-
ности формирования обучающей выборки.

1. БАЗЫ ДАННЫХ, СОДЕРЖАЩИЕ 
ТЕПЛОВИЗИОННЫЕ ИЗОБРАЖЕНИЯ
В этой работе мы решили сконцентрироваться 
на задаче классификации изображений, по-
скольку она является наиболее исследованной 
и устоявшейся областью применения нейрон-
ных сетей глубокого обучения. Известно, что 
нейронные сети при наличии достаточной об-
учающей выборки могут быть крайне эффек-
тивными при решении этой задачи [14].

Для проведения экспериментов требова-
лось найти такой набор данных, который бу-
дет соответствовать следующим параметрам:

1. База данных включает тепловизионные 
изображения и изображения видимого спек-
тра с одинаковыми классами, разрешением 
изображений, количеством объектов в вы-
борках;

2. База данных будет пригодна для задачи 
классификации изображений.

По результатам поиска мы выделили четы-
ре базы данных (таблица 1).

Thermal Image dataset for object classifica-
tion [3] включает в себя более семи тысяч изо-
бражений, снятых на две различные тепловизи-
онные камеры. Снимки поделены на три класса: 
«cat», «car», «man». Пример такого снимка изо-
бражён на рис. 1а.

Набор данных Chips Thermal Face [4] содер-
жит более 1200 тепловизионных изображе-
ний мужчин и женщин с трёх разных конти-
нентов, возрастом от 18 до 23 лет. Этот набор 
данных предназначен для создания точной 
тепловой классификации лиц и систем тепло-
вого распознавания лиц. Из описания сле-
дует, что снимки были сделаны в разных ус-
ловиях — различные локации (дом, улица), 
рядом с объектами с высокой температурой 
(батареи, кухонная техника) или без них, на 
разных расстояниях от камеры, к каждому 
сценарию применялось 5 различных цвето-
вых режимов, участники могли быть в аксес-
суарах или без них, в группе или поодиночке, 
а также с поворотом головы лицом к камере 
на разный диапазон градусов (пример снимка 
на рис. 1б).
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Таблица 1. Наборы данных с тепловизионными изображениями 

Table 1. Datasets with thermal images

№ Название базы данных Наличие изображений 
видимого спектра

Предназначение набора 
данных

Количество 
изображений

1 Thermal Image dataset 
for object classification

Нет в наличии Классификация объектов 7428

2 Chips Thermal Face Dataset Нет в наличии Распознавание лиц Более 1200

3 Teledyne FLIR Free ADAS 
Thermal Dataset v2

Есть в наличии Обнаружение объектов 26442

4 Pitch-In LBAM Thermal 
Imaging Dataset

Нет в наличии Классификация Не указано

(а)

(д)

(г)(в)

(б)

Рис. 1. Примеры для рассматриваемых наборов данных. Набор данных Thermal Image dataset for object 
classification (а); набор данных Chips Thermal Face (б); пример изображения видимого спектра набора 
данных FLIR ADAS Thermal Dataset v2 (в); пример тепловизионного изображения набора данных 
FLIR ADAS Thermal Dataset v2 (г); пример тепловизионного изображения набора Pitch-In LBAM Thermal 

Imaging (д)

Fig. 1. Examples for the considered datasets. (a) Thermal Image dataset for object classification; (б) Chips 
Thermal Face dataset; (в) example of visible image of FLIR ADAS Thermal Dataset v2; (г) example of thermal 
image of FLIR ADAS Thermal Dataset v2; (д) example of thermal image of Pitch-In LBAM Thermal Imaging
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FLIR ADAS Thermal Dataset v2 включает 
в себя полностью размеченные кадры тепло-
визионного и видимого спектра, предназначен-
ные для задачи обнаружения объектов [2]. 
В этой базе данных содержатся дневные, ноч-
ные снимки и снимки в условиях сумерек/рас-
света. Для тепловизионной выборки предло-
жено 16 классов, для выборки видимого спек-
тра — 14. Примеры изображений видимого 
и тепловизионного спектра представлены на 
рис. 1в и 1г.

Pitch-In LBAM Thermal Imaging Dataset 
[5] — набор данных для задачи обнаружения 
дефектов на машине LBAM (лазерное адди-
тивное производство). Пример изображения 
из базы данных Pitch-In LBAM приведён на 
рис. 1д.

Для нашего исследования помимо боль-
шого размера базы данных предпочтительно, 
чтобы изображения имели схожие сцены, схо-
жее количество и качество объектов для двух 
выборок. Исходя из этих критериев, для экс-
перимента был выбран FLIR ADAS Thermal 
Dataset v2, для которого съёмка проводилась 
одновременно на два типа камер. В связи 
с этим, изображения в инфракрасном спектре 
и в видимом спектре в нём схожи, категории 
совпадают, а проблему применения изображе-
ний для задачи классификации, а не обнару-
жения объектов, можно решить путём выде-
ления и вырезания изображений объектов из 
исходной базы данных.

2. МЕТОДЫ ПОДГОТОВКИ 
И АУГМЕНТАЦИИ ДАННЫХ 
ДЛЯ ИМИТАЦИИ ТПВ ИЗОБРАЖЕНИЙ 
Набор данных Teledyne FLIR Free ADAS 
Thermal Dataset v2 [2] был предназначен для 
задачи обнаружения объектов. При этом клас-
сы объектов не были сбалансированы по умол-
чанию, поэтому было принято решение ис-
пользовать объекты, принадлежащие к клас-
сам с наибольшим количеством образцов — это 
классы «person», «car», «light», «sign». Все-
го база данных содержит три набора данных: 
обучающий (тепловизионные изображения — 
175040, изображения видимого диапазона — 
169174), валидационный (тепловизионные 
изображения — 16696, изображения видимо-
го диапазона — 16909) и тестовый (теплови-
зионные изображения — 3749, изображения 

видимого диапазона — 3753). В разделе, опи-
сывающем эксперименты, мы показываем, 
что нерелевантная геометрическая аугмен-
тация крайне негативно сказывается на точ-
ность решаемой задачи (классификации ТПВ 
данных при обучении на ТВ данных). При 
этом тестовая выборка носит косвенные при-
знаки геометрического отклонения от валида-
ционной и обучающей, что видно по табл. 2 — 
средний размер описывающих прямоуголь-
ников у тестовой выборки видимого спектра 
значительно отличается от тестовой выборки 
тепловизионного спектра, что не характерно 
для обучающих и валидационных выборок. 
По этой причине (и потому, что общее коли-
чество изображений в тестовом наборе срав-
нительно невелико) для экспериментов изо-
бражения тестовой выборки не использова-
лись. В связи с этим, далее мы подробно опи-
сываем только обучающий и валидационный 
наборы.

Для каждого объекта класса был подсчитан 
описывающий прямоугольник (рис. 2). Далее 
описывающий прямоугольник был увеличен 
до размера наибольшей из сторон этого же 
прямоугольника, и затем так же был увели-
чен на 20% от новой площади для внедрения 
дополнительного контекста к описываемому 
объекту.

Таблица 2. Среднее значение высоты и ширины 
описываемого прямоугольника для объекта для 

каждой выборки

Table 2. The average value of the height and width of 
the bounding box for the object for each sample

Название выборки
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и

к
се
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ов

)

Обучающий набор, ТВ 66 74

Валидационный 
набор, ТВ

65 70

Обучающий набор, 
ТПВ

28 32

Валидационный 
набор, ТПВ

28 32

Тестовый набор, ТВ 31 32

Тестовый набор, ТПВ 22 24
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Тепловизионные изображения и изображе-
ния видимого спектра были отфильтрованы 
по следующим критериям: 

1) Объекты на изображении на переднем 
плане ничем не загорожены (“fully_visible”), 
как в примере на рис. 3;

(а) (б)

Рис. 3. Сравнение снимков класса “car” с разной степенью закрытости. Ничем не закрыт, “fully_visible” (а); 
закрыт на 70–90% (б)

Fig. 3. Comparison of «car» class images with different degrees of occlusion. (a) Not occluded by anything, 
«fully_visible»; (б) occluded by 70–90% 

Рис. 2. Пример подготовки набора данных: чёрная 
рамка представляет собой описывающий 
прямоугольник; белая рамка — описывающий 
прямоугольник увеличивается до размера 
максимальной стороны; красная рамка — 

увеличенная на 20% белая рамка

Fig. 2. Example of data preparation: black box 
represents a bounding box; white box — the 
bounding box is enlarged to the size of the maximum 

side; red box — the white box is enlarged by 20%

2) Диагональ описывающего прямоугольни-
ка для каждого объекта должна быть не менее 
16 пикселов. Данный параметр был взят исхо-
дя из среднего размера таких описывающих 
прямоугольников, представленных в табл. 2. 
Несмотря на то, что мы берём определённого 
размера изображения, есть образцы, которые 
визуально труднораспознаваемы (рис. 4), и та-
ким образом, полученная выборка является 
достаточно сложной. 

Размеры получившихся выборок теплови-
зионного спектра представлены в табл. 3.

Такую же фильтрацию мы применили и 
для набора изображений видимого спектра, 
однако, дополнительно мы также постара-
лись учесть критерий времени съёмки, по-
скольку ночные изображения видимого спек-
тра сильным образом отличаются от дневных 
изображений — часто присутствую вспышки 
от фонарей, автомобильных фар, светофоров 
(табл. 4). 

Наше предположение заключалось в том, 
что для имитации тепловизионных изображе-
ний больше подходят изображения видимого 
диапазона, снятые в дневное время (рис. 5).

Всего можно выделить два типа аугмента-
ции — яркостную и геометрическую. Послед-
няя связана с применением к изображению 
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какого-нибудь пространственного преобра-
зования, например, вращения. В настоящей 
работе мы исходили из того, что основные осо-
бенности подготовки и аугментации данных 
для решения данной задачи должны быть 
связаны именно с яркостными изменениями, 

так как принцип получения ТПВ и ТВ изобра-
жений с точки зрения геометрии проецирова-
ния лучей на матрицу фотоприёмника практи-
чески идентичен. В связи с этим, выборки фор-
мировались таким образом, чтобы, по возмож-
ности, исключить важность геометрической 

Таблица 3. Количество тепловизионных изображений в наборах данных, использованных в экспериментах 

Table 3. Number of thermal images in the datasets used in the experiments

Имя класса
Полный набор данных После фильтрации

Обучающая 
выборка

Валидационная 
выборка

Обучающая 
выборка

Валидационная 
выборка

person 50478 4470 22569 1987

car 73623 7133 21153 2789

light 16198 2005 8149 943

sign 20770 2472 9230 1222

Таблица 4. Изображения объектов в видимом спектре после фильтрации 

Table 4. Images of objects in the visible spectrum after filtering

Имя 
класса

Полный 
набор данных 

(включающий образцы 
без аннотации времени 

суток)

День Сумерки и рассвет Ночь

Обуча-
ющая 

выборка

Валида-
ционная 
выборка

Обуча-
ющая 

выборка

Валида-
ционная 
выборка

Обуча-
ющая 

выборка

Валида-
ционная 
выборка

Обуча-
ющая 

выборка

Валида-
ционная 
выборка

person 35007 3223 1143 1135 945 0 1888 1764

car 71281 7285 1458 2067 1297 0 2235 2889

light 18640 2143 6864 906 274 0 1377 1727

sign 29531 3581 1219 1708 714 1 2002 2614

(а) (б) (г)(в)

Рис. 4. Примеры нераспознаваемых изображений. Пример изображения класса “light” (а); пример 
изображения класса “car” (б); пример изображения класса “person” (в); пример изображения класса 

“sign” (г)

Fig. 4. Examples of unrecognized images. (a) Example of an image of the class «light»; (б) example of an image 
of the class «car»; (в) example of an image of the class «person»; (г) example of an image of the class «sign» 
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(а) (б) (к)(и)

(в) (г) (м)(л)

(д) (е) (о)(н)

(ж) (з) (р)(п)

Рис. 5. Сравнение изображений разных спектров в разное время суток. Изображение видимого спектра 
класса “car” в ночное время (а); изображение тепловизионного спектра класса “car” в ночное время (б); 
изображение видимого спектра класса “car” в дневное время (в); изображение тепловизионного спектра 
класса “car” в дневное время (г); изображение видимого спектра класса “person” в ночное время (д); 
изображение тепловизионного спектра класса “person” в ночное время (е); изображение видимого спектра 
класса “person” в дневное время (ж); изображение тепловизионного спектра класса “person” в дневное 
время (з); изображение видимого спектра класса “light” в ночное время (и); изображение тепловизионного 
спектра класса “light” в ночное время (к); изображение видимого спектра класса “light” в дневное время 
(л); изображение тепловизионного спектра класса “light” в дневное время (м); изображение видимого 
спектра класса “sign” в ночное время (н); изображение тепловизионного спектра класса “sign” в ночное 
время (о); изображение видимого спектра класса “sign” в дневное время (п); изображение тепловизионного 

спектра класса “sign” в дневное время (р)

Fig. 5. Comparison of images of different spectrums at different times of the day. (a) Image of visible spectrum 
of «car» class at night time; (б) image of thermal spectrum of «car» class at night time; (в) image of visible 
spectrum of «car» class at day time; (г) image of thermal spectrum of «car» class at day time; (д) image of the 
visible spectrum of the «person» class at night; (е) image of the thermal spectrum of the «person» class at 
night; (ж) image of the visible spectrum of the «person» class at daytime; (з) image of the thermal spectrum of 
the «person» class at daytime; (и) image of the visible spectrum of the «light» class at night; (к) image of the 
thermal spectrum of the «light» class at night; (л) image of the visible spectrum of the «light» class at daytime; 
(м) image of the thermal spectrum of the «light» class at daytime; (н) photo of the visible spectrum of the 
«sign» class at night; (о) photo of the thermal spectrum of the «sign» class at night; (п) photo of the visible 
spectrum of the «sign» class at daytime; (р) photo of the thermal spectrum of the «sign» class at daytime
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аугментации — все объекты интереса распола-
гались по центру изображения, а изображения 
масштабировались к одному размеру. 

Далее рассмотрим способы повышения ви-
зуального сходства ТВ и ТПВ данных. В ка-
честве примера для рис. 6 были взяты образ-
цы одного класса. Так, на рис. 6а показано 
оригинальное изображение видимого спектра 
в чёрно-белом формате и изображение тепло-
визионного спектра на рис. 6з.

На тепловизионном изображении видно, 
что границы объектов чёткие, нет размыто-
сти, и выше контраст по сравнению с соответ-
ствующим изображением видимого спектра. 
Для компенсации этих эффектов на видимом 
изображении были применены следующие 
аугментации [17–19]: 

1) Увеличение контрастности c помощью 
линейной комбинации (blending) изображе-

ния cо смещённым значением его средней 
яркости (рис. 6б) в соответствии с форму-
лой (2.1) [17]:

 

c c

c
11 0 5

,

( , ) ( , )

( ) ( , ) , ,
g k

I g k I g k

I g k
n





= +
⎛ ⎞⎟⎜+ − + ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑  (2.1)

где I(g, k) и Iс(g, k) — яркость пиксела с коор-
динатами g и k исходного и контрастного изо-
бражения соответственно, n — количество 
всех элементов изображения, c — коэффици-
ент контрастности;

2) Нормализация яркости (histogram equal-
ization) [18] (рис. 6в);

3) Увеличение резкости снимка, как по-
казано на рис. 6г, для прибавления чёткости 
краям объекта с помощью маскирования раз-
мытия (unsharp masking) [19].

(а) (б)

(и)

(в) (г)

(д) (е) (ж) (з)

Рис. 6. Примеры аугментаций. Изображение видимого спектра без аугментаций (а); изображение 
видимого спектра с использованием функции с увеличением контрастности (б); изображение видимого 
спектра с использованием функции с уменьшением контрастности (в); изображение видимого спектра 
с использованием функции увеличения резкости с коэффициентом s = 10,0 [19] (г); изображение 
видимого спектра с использованием функций с увеличением резкости и контрастности (д); изображение 
видимого спектра с использованием функций увеличения яркости (е); изображение видимого спектра 
с использованием функции инвертирования в негативный снимок (пример на автомобиле белого 
цвета) (ж); изображение видимого спектра с использованием функции инвертирования в негативный 
снимок (пример на автомобиле чёрного цвета) (з); пример изображения тепловизионного спектра (и)

Fig. 6. Examples of augmentations. (a) image of the visible spectrum without augmentations; (б) image of the 
visible spectrum using a function to increase contrast; (в) image of the visible spectrum using a function to 
reduce contrast; (г) image of the visible spectrum using a function to increase sharpness with parameter 
s = 10.0 [19]; (д) image of the visible spectrum using functions to increase contrast and sharpness; (е) image 
of the visible spectrum using functions to increase brightness; (ж) image of the visible spectrum using the 
function of inversion into negative(as illustrated by a white vehicle); (з) image of the visible spectrum using 
the function of inversion into negative (as illustrated by a black vehicle); (и) example of image of the thermal 

imaging spectrum
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Выходное изображение также можно пред-
ставить в виде линейной комбинации исход-
ного изображения и результата его свёртки 
с известным ядром F, сглаживающим изобра-
жение [17] (2.2):

 

s s
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( , ) ( , )

( ) ( , ) ( , ) ,
S S

i j

I g k I g k

F i j I g i k j





= +
⎛ ⎞⎟⎜ ⎟⎜+ − − − ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑∑  (2.2)

где I(g, k) и Is(g, k) — яркость пиксела с коор-
динатами g и k исходного и резкого изображе-
ния соответственно, S — размер ядра, s — 
коэффициент резкости;

4) Линейное увеличение яркости в b раз, 
как на рис. 6е [17];

5) Инвертирование яркостей для преобра-
зования в негативный снимок [18]. На рис. 6 
образцы под буквами (ж) и (з) представлены 
для визуального сравнения аугментированно-
го изображения видимого спектра с изображе-
ниями тепловизионного спектра. 

Таким образом, мы исходим из того, что 
комбинация следующих преобразований мо-
жет приводить к повышению визуального 
сходства ТВ с ТПВ:

– увеличение яркости, 
– увеличение контраста, 
– инвертирование,
– повышения резкости изображений. 
В пакетах для аугментации изображения 

вместо отдельных манипуляций с яркостью 
и контрастом используют обобщение этих 

(а)

(б)

(в)

Рис. 7. Применение произвольного изменения яркости и контрастности изображения. Коэффициент 
изменения яркости b выбирается случайным образом от 0,6 до 1,4 (а); коэффициент для изменения 
контрастности c выбирается случайным образом от 0,6 до 1,4 (б); коэффициенты для изменения яркости 

и контрастности одновременно выбираются случайным образом от 0,6 до 1,4 (в)

Fig. 7. Application of random image brightness and contrast variation. (a) The coefficient b for brightness 
changing is chosen randomly from 0.6 to 1.4; (б) the coefficient c for contrast changing is chosen randomly 
from 0.6 to 1.4; (в) the coefficients for brightness and contrast changing are chosen randomly from 0.6 to 1.4
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преобразований — рандомизированные цве-
товые изменения (color jitter [16]), которые 
включают в себя помимо указанных выше 
также случайное изменение насыщенности и 
тона. Пример аугментации изображений с по-
мощью процедуры color jitter (без манипуляций 
с тоном и насыщенностью) приведён на рис. 7.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Параметры обучения
Для проведения экспериментов мы восполь-
зовались проектом обучения моделей ком-
пьютерного зрения, реализованным с исполь-
зованием библиотеки PyTorch [20], и приме-
нили некоторые предлагаемые для обучения 
на ImageNet [21] параметры из этого репози-
тория. 

Общая информация 
Трудность проведения исследования заключа-
лась в сложности отделения разных факторов, 
сказывающихся на точность распознавания 
тепловизионных изображений на основании 
обучения на изображениях видимого диапазо-
на. Например, использование геометрической 
аугментации может по-разному сказывать-
ся на эту характеристику при малой и боль-
шой обучающей выборке, при старте обучения 
со случайными и неслучайными весами [22]. 
Нам приходилось перепроверять промежуточ-
ные выводы уже с учётом выводов, получен-
ных к настоящему моменту, и иногда ограни-
чено воспроизводить некоторые из них.

В тексте ниже, чтобы каждый раз не огова-
риваться, при предъявлении результатов мы бу-
дем ссылаться на выборки следующим образом:

– снятые днём — day;
– снятые ночью — night;
– снятые в сумерках или во время рассве-

та — dawn;
– весь набор (включая неаннотированное 

время съёмки) — whole;
Такое дополнительное описание будет ис-

пользоваться как для наборов данных види-
мого спектра, так и для тепловизионных дан-
ных. Также мы будем ссылаться на результа-
ты, полученные с использованием:

– случайной инициализации весов — rand-
init;

– предобученных весов — imagenet-init.

Обучающие 
и валидационные выборки
Все обучающие и валидационные выборки 
были получены из базы данных FLIR ADAS 
Thermal Dataset v2 [2] с использованием про-
цедуры фильтрации по размеру и центрирова-
ния, описанной в разделе 2. В каждом экспери-
менте мы приводим точности классификации 
валидационных выборок видимого и теплови-
зионного спектров, достигнутых в конце обу-
чения (тестовая выборка не использовалась по 
причинам, описанным в разделе 2).

Для получения обучающей и валидацион-
ной выборки видимого спектра мы использо-
вали изображения, находящиеся в каталогах 
images_rgb_train, images_rgb_val. При этом, 
если в соответствии с дизайном эксперимента 
к обучающей выборке применялась дополни-
тельная фильтрация (по времени суток), то та-
кая же фильтрация применялась и к валида-
ционной выборке видимого спектра. 

Для валидационной выборки тепловизион-
ных изображений дополнительная фильтра-
ция не применялась никогда (использовался 
набор whole), поскольку целью было исследо-
вать влияние предлагаемых методов на рас-
познавание тепловизионных данных, вклю-
чающих ночную съёмку, когда использование 
невидимого глазом спектра наиболее оправда-
но. Кроме того, для того, чтобы повысить до-
стоверность полученных в нашей работе вы-
водов, для оценки точности распознавания 
тепловизионного набора мы использовали не 
валидационный, а обучающий набор (находя-
щийся в каталоге images_thermal_train) базы 
данных FLIR ADAS Thermal Dataset v2, по-
скольку он содержит на порядок больше при-
меров. 

Архитектура нейронной сети
Мы провели несколько предварительных экс-
периментов с популярными архитектура-
ми нейронных сетей, включая ResNet [23] и 
EfficientNet [24], обучая их с нуля или беря 
в качестве инициализации веса, предобучен-
ные на ImageNet. Для распознавания вали-
дационной ТВ выборки (особенно с исполь-
зованием предобученных весов) чуть более 
эффективными оказывались решения с боль-
шим количеством настраиваемых параметров 
(resnet-152 и efficientnet-b6), однако, для за-
дачи обобщения на тепловизионный спектр 
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размер сети не оказывал ключевого влияния, 
при этом затраты на обучение были заметно 
выше, чем при обучении меньших по размеру 
моделей. 

В связи с этим, для проведения экспери-
ментов мы решили использовать архитектуру 
ResNet-18 [23], поскольку ResNet архитекту-
ры де-факто являются стандартом при про-
ведении экспериментов с классификаторами, 
а кроме того:

– ResNet-18 является небольшой по глуби-
не сетью и может быть обучена сравнительно 
быстро;

– она состоит из однородных блоков, харак-
терных и для больших моделей ResNet.

Гиперпараметры оптимизации 
Мы исследовали несколько наборов гипер-
параметров для оптимизаторов SGD [25] и 
RMSPROP [26], которые позволяют эффектив-
но обучать различные архитектуры нейрон-
ных сетей на базе данных ImageNet. Во всех 
случаях мы масштабировали изображение 
к размеру 224224 при подаче на вход сети. 
Для обучения с нуля с помощью SGD мы ис-
пользовали косинусный алгоритм измене-
ния шага обучения с пятью эпохами «про-
грева», 240 эпох, пакет изображений раз-
мером 192. Для RMSPROP использовались 
600 эпох, плавно меняющийся шаг обуче-
ния, бегущие средние веса, пакет 64 и до-
полнительный шум в шаге градиентного 
спуска. 

SGD считается одним из наиболее подхо-
дящих оптимизаторов для обучения клас-
сификаторов, однако в нашем случае экс-
перименты показали, что RMSPROP с ука-
занными выше параметрами обеспечивал 
более стабильную сходимость нейронных  
сетей (с точки зрения точности распознава-
ния ТПВ изображений) и меньшую зависи-
мость от случайной инициализации весов 
при примерно той же итоговой точности, по-
этому в приведённых ниже экспериментах 
со случайной инициализацией использовал-
ся именно он. 

Дообучение нейронных сетей в наших экс-
периментах происходило в течение 200 эпох с 
использованием SGD и скачкообразного изме-
нения шага обучения. Во всех экспериментах 
мы сообщаем точность распознавания валида-
ционных выборок в конце обучения.

Геометрическая аугментация
В качестве опорного метода мы рассмотрели 
сочетание двух эффективных методов аугмен-
тации:

– RandomCropResize и flip — извлечение 
фрагмента исходного изображения с последу-
ющим масштабированием к заданному разме-
ру (RandomCropResize), отражение фрагмента 
по вертикали с вероятностью 0,5 (flip). 

– RandAugment [27] — модификация ал-
горитма AutoAugment [28, 29], который осу-
ществляет геометрическую и яркостную ауг-
ментацию индивидуально к каждому при-
меру стратегиями, сочетающими до двух 
различных преобразований (инвертирова-
ния, вращения). RandAugment, в отличие от 
AutoAugment, вместо набора фиксированных 
стратегий (пар преобразований) каждый раз 
использует случайно сгенерированную стра-
тегию. В список используемых алгоритмом 
RandAugment аугментаций входят такие пре-
образования, как авто- и ручное контрастиро-
вание, инвертирование, вращение, изменение 
насыщенности, резкости, яркости и нормали-
зация яркости, постеризация, эффект выцве-
тания, проективные преобразования и сме-
щения. В наших экспериментах оказалось, 
что RandAugment превосходит AutoAugment 
(со стратегиями преобразований, выученны-
ми для ImageNet) по точности распознавания 
ТПВ изображений. В табл. 5 приведены ре-
зультаты экспериментов для RandAugment. 

В условиях небольшой обучающей выбор-
ки нейронные сети характеризуются ограни-
ченными обобщающими способностями к на-
личию нерелевантных образов и геометриче-
ских преобразований [22], т.к. это повышает 
сложность задачи и, таким образом, снижает 

Таблица 5. Точность распознавания ТВ и ТПВ 
изображений при наличии геометрической и 

яркостной аугментации ImageNet (rand-init, day) 

Table 5. Accuracy of TV and thermal images in the 
presence of ImageNet geometric and brightness 

augmentation (rand-init, day)

Random-
crop-resize RandAugment ТВ ТПВ

+ стандартн. 98,0 82,8

– стандартн. 98,2 90,5

– без геом. 97,5 89,3
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точность распознавания для всей тестовой вы-
борки. 

Поскольку база данных строилась таким 
образом, чтобы исключить важность геоме-
трических преобразований, можно было бы 
ожидать, что их вклад будет либо негатив-
ным, либо нейтральным, если они не будут со-
гласованы с подготовкой базы данных. Такая 
несогласованность характерна для процедуры 
RandomCropResize. 

Важно, что снижение точности распознава-
ния валидационной выборки при использова-
нии геометрической аугментации оказалось 
незначительным (0,2%) и намного больше для 
распознавания тепловых изображений (8%). 
Это можно объяснить тем, что тепловизионные 
изображения имеют больше сходства с и зобра-
жениями видимого спектра именно в общих 
очертаниях образов, а не в отдельных деталях. 
Кроме того, некоторые исходные изображения 
обучающего набора уже имели низкое разре-
шение, которое при этом в среднем ниже для 
ТПВ (размеры изображений были ранее при-
ведены в табл. 2). 

Почти во всех экспериментах, направленных 
на повышение точности распознавания тепло-
визионных изображений, мы получали оди-
наково стабильные результаты распознавания 
изображений видимого спектра ((98 ± 0,5)%). 
Таким образом, точность распознавания изо-
бражений видимого спектра не может быть 
критерием при распознавании тепловизион-
ных данных, даже если способ выбора фраг-
мента на двух снимках является одинаковым. 
Тем не менее, для большинства экспериментов 
мы всё равно приводим точность для видимых 
изображений, т.к. это предоставляет дополни-
тельную информацию о том, как происходило 
обучение.

Алгоритм RandAugment содержит внутри 
себя стратегии с использованием геометри-
ческих аугментации (например, сдвиг), по-
этому мы попробовали заменить их вручную 
на более подходящие (с нашей точки зрения) 
яркостные преобразования, однако это не 
увеличило точность распознавания (табл. 5). 
Можно сделать вывод, что по крайней мере 
некоторые виды геометрической аугмента-
ции могут быть полезны для решения дан-
ной задачи. В дальнейших экспериментах 
мы исключили внешние геометрические ауг-
ментации (RandomCropResize, flip), но оста-

вили AutoAugment и RandAugment в неиз-
менном виде, предлагаемом для обучения на 
ImageNet.

Удаление фрагментов (Random Erasing)
Одной из известных техник расширения дан-
ных является удаление случайных фрагмен-
тов изображения [30]. В соответствии с пред-
положением о том, что отдельные детали изо-
бражений видимого спектра неважны для 
формирования нейронной сетью признаков, 
пригодных для распознавания снимков те-
плового спектра, можно предположить, что 
данный вид аугментации окажется важным.

Мы рассмотрели несколько способов удале-
ния фрагментов:

– удалённый блок заполняется нулями 
(const);

– удалённый блок заполняется случайны-
ми пикселами (pixel).

Эксперименты показали, что эта процедура 
несёт незначительный вклад и лишь слегка 
повышает точность распознавания тепловизи-
онного спектра при отсутствии другой аугмен-
тации (табл. 6). 

Resnet-18, обученная без использования 
аугментации на видимом диапазоне, обеспе-
чивает точность распознавания ТПВ изобра-
жений 66,5%, а с использованием случайного 
удаления фрагментов можно поднять эту точ-
ность на 2,5%.

Несмотря на незначительный вклад этой 
аугментации, мы её использовали во всех 
остальных экспериментах (pixel, размер сто-
роны удаляемого фрагмента до 0,2), т.к. ожи-
дали, что она может иметь положительный 
вклад в решение задачи вместе с другими ви-
дами аугментации.

Таблица 6. Точность распознавания ТПВ 
изображений при применении случайного удаления 
фрагментов в зависимости от размера удалённого 
фрагмента относительно размеров преобразуемого 

изображения (rand-init, day)

Table 6. Accuracy of thermal image recognition using 
random fragment removal (rand-init, day)

Способ 
удаления 

фрагментов

Размер стороны 
удалённого 

фрагмента 20%

Размер стороны 
удалённого 

фрагмента 40%

const 67,9 68

pixel 67,8 69,13
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Изменение естественного освещения: 
исследование влияния времени суток 
съёмки видимых изображений 
на результаты распознавания 
тепловизионных

В разделе 2 мы привели примеры данных ви-
димого спектра и указали на то, что днев-
ные изображения могут быть наиболее под-
ходящими для имитации ТПВ изображе-
ний. Для проверки этой гипотезы мы обучили 
ResNet-18 на четырёх разных наборах изобра-
жений. Результаты приведены в табл. 7.

Как видно из таблицы, наилучшая точность 
распознавания ТПВ достигается на выбор-
ке дневных изображений несмотря на то, что 
она самая маленькая. К удивлению, точность 
распознавания при использования полного 

набора наименьшая. При этом, однако, тяже-
ло судить о том, какая пропорция в полном 
наборе сумеречных изображений, добавление 
которых, как видно из таблицы, имеет силь-
ный отрицательный вклад в точность распоз-
навания.

Преимущество использования дневных 
изображений видимого диапазона для ими-
тации ТПВ хорошо заметно на очень малых 
обучающих выборках. Например, точность 
распознавания ТПВ данных с помощью 
ResNet-18, обученной на 100 случайных при-
мерах дневной съёмки, составила почти 76%. 
В то же время использование 100 случайных 
примеров без ограничения на период съём-
ки позволило получить лишь 69% (табл. 8). 
Схожий эффект достигается, если доучивать 
нейронную сеть без использования какой-ли-
бо аугментации. 

При этом, если обучать сеть без аугмента-
ции, начиная со случайно инициализирован-
ных весов на всей базе данных, то получается 
строго обратное: лучше уже работает исполь-
зование большей обучающей выборки, вклю-
чающей все времена суток (табл. 9). 

Это согласуется с гипотезой о большей 
пригодности именно дневных изображений 
видимого диапазона для имитации ТПВ изо-
бражений, поскольку при случайной иници-
ализации и отсутствии аугментации любое 

Таблица 7. Точность распознавания в зависимости 
от времени съёмки (random-init) 

Table 7. Accuracy of recognition depending on 
shooting time (random-init)

Время съёмки ТВ, % ТПВ, %

Любое (whole) 98,0 88,9

День, ночь, сумерки 
(аннотированные)

98,1 90,5

День, сумерки 98,0 90,0

День 98,2 90,8

Таблица 8. Результаты при использовании 100 обучающих примеров 

Table 8. Results of using 100 training examples

Время съёмки Аугментация (RandAugment) Инициализация сети ТВ,% ТПВ,%

День + rand-init 88,2 75,9

Любое + rand-init 85,6 69,2

День – imagenet-init 95,7 76,1

Любое – imagenet-init 95,6 74,1

Таблица 9. Результаты без использования аугментации данных 

Table 9. Results without data augmentation

Время съёмки Аугментация (RandAugment) Инициализация сети ТВ, % ТПВ, %

Любое – rand-init 97,5 72,7

День, сумерки, ночь – rand-init 97,6 71,7

День, сумерки – rand-init 98 67,3

День – rand-init 97,9 66,5
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разнообразие изображений позволяет лучше 
сформировать признаки общего назначения, 
располагающиеся в первых слоях нейронной 
сети, однако эти признаки неспецифичны 
к решаемой задаче. Предобученная сеть уже 
обладает такими признаками и дневные изо-
бражения в итоге обеспечивают лучший ре-
зультат. 

Данный вывод является крайне важным, 
поскольку в ходе выполнения первых экспери-
ментов мы не заметили пользы от предобучен-
ных весов для распознавания ТПВ изображе-
ний, пока используемая аугментация не была 
согласована с представлениями об имитации 
ТПВ данных. Во всех экспериментах, описан-
ных далее, используется выборка, состоящая 
только из дневных изображений.

Аугментация через имитацию ТПВ
В разделе 2 мы привели примеры яркостных 
преобразований, которые с нашей точки зре-
ния обеспечивают визуальное сходство изо-
бражений видимого спектра с изображения-
ми ТПВ спектра:

– инвертирование изображения;
– усиление резкости.
В этом разделе мы приводим результаты 

экспериментов, которые подтверждают эф-
фективность использования этих преобра-
зований. Resnet-18, обученная без использо-
вания аугментации, обеспечивает точность 
66,5%. Результаты экспериментов приведены 
в табл. 10.

Во-первых, мы используем преобразование 
color jitter, которое обобщает преобразование 
увеличения контраста. Хотя по отдельности 
это лишь слегка повышает точность распоз-
навания ТПВ изображений, в совокупности 
с другими преобразованиями оказывается до-
статочно эффективным. Добавление инверти-
рования изображения с вероятность 0,5 уже 
значительно повышает точность распознава-
ния ТПВ изображений, хотя лишь удваивает 
количество примеров обучающей выборки. 
Также мы наблюдаем положительный вклад 
преобразования увеличения резкости. Набор 
преобразований, описанных выше, уже по-
зволяет догнать по точности методы, основан-
ные на индивидуальном формировании стра-
тегии аугментации к каждому изображению 
(RandAugment и AutoAugment). Совмещение 
AutoAugment и RandAugment с предлагае-

мым подходом позволяет повысить итоговую 
точность ещё на 1,6% (RandAugment) и 1,1% 
(AutoAugment) соответственно. Заметим, что 
в приведённых в табл. 10 экспериментах мы 
не использовали геометрическую аугмента-
цию, связанную со случайным отражением 
изображения по горизонтали. Интуитивно 
кажется, что такая аугментация должна по-
вышать точность распознавания и в видимом, 
и в тепловизионном спектре, однако в наших 
экспериментах добавление этой аугментации 
не повлияло на результаты. Мы связываем 
это с особенностью решаемой задачи. Камеры 
располагаются на автомобиле в определённом 
положении относительно дороги, и, напри-
мер, дорожные знаки (в видимом диапазоне) 
не инвариантны к зеркальному отражению. 
Вероятно, нечто подобное может происходить 
и для ТПВ изображений, хотя подробный ана-
лиз этого вопроса выходил за рамки данного 
исследования.

Дообучение нейронных сетей
Инициализация с помощью весов, предобу-
ченных на ImageNet, позволяет ещё увеличить 
точность распознавания ТПВ данных при ис-
пользовании больших моделей (табл. 11).

Согласно полученным результатам (табл. 11), 
большие сети показывают лучшие результаты 

Таблица 10. Аугментация с использованием 
преобразований имитации ТПВ (rand-init) 

Table 10. Augmentation using thermal image imitation 
transformations (rand-init)

Аугментация ТВ, % ТПВ, %

– 98,3 67,8

color jitter 97,7 70,1

color jitter + invert 97,4 89,7

color jitter + invert + sharpness 
(Thermal imitation)

97,2 90,6

RandAugment [27] 98,4 90,5

AutoAugment [28] 98,3 90,3

RandAugment + invert 98,1 90,8

AutoAugment + invert + 
sharpness

97,7 90,9

thermal imitation + 
AutoAugment

97,4 91,4

thermal imitation + random 
augment

97,5 92,1
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Таблица 11. Аугментация с использованием преобразований имитации ТПВ при использовании больших 
предобученных моделей 

Table 11. Augmentation with thermal imaging imitation transformations using large pre-trained models

Аугментация Инициализация Архитектура ТПВ, %

Thermal imitation + RandAugment rand-init ResNet-18 92,1

Thermal imitation + RandAugment imagenet-init ResNet-18 91,6

Thermal imitation + RandAugment rand-init ResNet-101 92,3

Thermal imitation + RandAugment imagenet-init ResNet-50 92,9

Thermal imitation + RandAugment imagenet-init ResNet-101 94,0

Thermal imitation + RandAugment imagenet-init ResNet-152 93,4

по сравнению с Resnet-18 (точность распозна-
вания ТВ в таблице не приведена, но она оста-
ётся на уровне чуть менее 98%). Наибольшая 
точность была получена с помощью Resnet-101 
и составила 94,0%.

ЗАКЛЮЧЕНИЕ
Мы рассмотрели способы обучения нейрон-
ных сетей распознаванию тепловизионных 
изображений, когда в наличии имеются толь-
ко данные видимого диапазона. Мы провели 
эксперименты на базе данных, содержащей 
изображения двух спектров. Параметры об-
учения, используемые для ImageNet, хотя и 
обеспечили высокую точность распознавания 
видимых изображений (98%), оказались ма-
лопригодными для обобщения этих знаний на 
ТПВ данных (82,8%).

Нами предложен способ аугментации изо-
бражений видимого спектра на основе мето-
да визуальной имитации ТПВ изображений. 
В соответствии с проведёнными эксперимен-
тами для решения поставленной задачи сле-
дует:

1. По возможности исключить при обуче-
нии аугментации, связанные с извлечением 
фрагментов изображений.

2. Исключить из обучающей выборки изо-
бражения, на которых присутствуют вспыш-
ки от искусственных источников освещения.

3. Использовать для аугментации данных: 
– инвертирование с вероятностью 0,5, 
– случайное контрастирование, 
– случайное изменение яркости, 
– увеличение резкости с вероятностью 0,5.
4. Использовать (по возможности) большие 

предобученные на ImageNet нейронные сети.
Мы показали, что каждое из указанных 

предложений положительным образом сказы-
вается на точность распознавания и при этом 
ни одно из них (кроме последнего пункта) не 
может быть оценено по точности распознава-
ния изображений видимого диапазона. В итоге 
нам удалось сократить количество ошибок при 
распознавании ТПВ изображений чуть менее, 
чем в три раза (с 17,2% до 6,0%), и добиться 
итоговой точности распознавания более 94%.

Отметим, что мы провели эксперименты по 
аугментации лишь с одной конкретной базой 
данных на ограниченном наборе классов изо-
бражений (человек, машина, дорожный знак, 
светофор). Можно ожидать, что при наличии 
других условий съёмки и другого оборудова-
ния некоторые параметры аугментации могут 
быть изменены для улучшения результатов. 
Тем не менее, мы ожидаем, что предложенный 
подход будет хорошо обобщаться на различ-
ные условия, поскольку при выборе способов 
имитации тепловизионных изображений мы 
исходили из общего впечатления о визуаль-
ных свойствах изображений двух спектров.
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