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Введение

В настоящее время вопросы формирования 
поля лазерного излучения оптическим резонато-
ром и преобразования его оптической системой 
решен в рамках параксиальной оптики [1, 2] 
и описывается базовыми функциями Гаусса–
Эрмита (для прямоугольной формы зеркал) и 
Гаусса–Лагерра (для круглых зеркал).

В действительности амплитудно-фазовое 
распределение поля, сформированное резона-
тором и преобразованное лазерной оптической 
системой (ЛОС), является искаженным. Основ-
ными причинами искажений являются наличие 
аберраций оптических элементов резонатора и 
ЛОС, влияние дифракции на оправах элементов 
резонатора и линз ЛОС, погрешность изготовле-
ния и установки элементов резонатора и ЛОС. 
Работа [3], в которой решена задача описания 
искажений основной моды лазерного излучения 
на выходе ЛОС, является основополагающей 
работой по этому вопросу. Тем не менее, задача 
исследования амплитудно-фазовых искажений 
лазерного излучения до конца не решена и оста-
ется актуальной.

Целью статьи являются введение функций 
искажений лазерного излучения и описание 
аберрационных функций искажения поля, сфор-
мированного идеальным резонатором многомо-
дового лазерного излучения после ЛОС. 

Функции искажений лазерного излучения

Реальное амплитудно-фазовое распределение 
поля лазерного излучения является искажен-
ным. Для описания связи реального пучка и 
идеального (параксиального) пучка предлага-
ется ввести функции искажений поля и искаже-
ния его основных параметров. 

Представление функций искажений распре-
делений амплитуды, фазы и размера1 идеаль-
ного и реального пучков возможно в двух вари-
антах:
– аддитивный
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– мультипликативный
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Здесь ,x y′ ′− поперечные координаты; ÏÀz −
положение плоскости, в которой анализируется 
поле лазерного излучения; , ,a hΔ Δϕ Δ −функ-
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1 Под размером пучка понимается его “полуширина” 
по уровню интенсивности 1/е2, причем полный размер 
пучка есть “ширина”, или “диаметр”.
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ции отклонения амплитуды, фазы и размера 
реального пучка от параксиального; , ,a hF F Fϕ −
функции искажений амплитуды, фазы и размера 
пучка лазерного излучения. Они определяются 
выражениями
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Искажения положения минимального сече-
ния (сечения перетяжки), размера перетяжки и 
угловой расходимости реального и параксиаль-
ного пучков представим следующим образом:
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где 2, , ( )p ps hΔ Δ Δ Θ −параметры отклонения по-
ложения сечения перетяжки, размера перетяж-
ки и угловой расходимости реального и паракси-
ального пучков.

Распределение поля лазерного 
излучения на выходе реальной ЛОС

В параксиальном приближении амплитудно-
фазовое распределение поля эрмито-гауссова 
пучка моды TEMmn  в плоскости 1O xy  имеет вид

[ ]0 0( , ) ( , )exp ( , ) ,x y a x y i x yψ ϕ=

где распределения амплитуды 0a и фазы 0ϕ  опре-
деляются выражениями [1, 3]
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Здесь 0,pA A − соответственно амплитуда поля 
преобразуемого пучка на оси в сечении пере-
тяжки и на входе линзы; λ− длина волны ла-
зерного излучения, 2 /k π λ= −волновое число,
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Рис. 1. Преобразование лазерного излучения реальной ЛОС. 2,ph Θ− размер перетяжки и угловая рас-
ходимость преобразуемого пучка; ,F F′− передний и задний фокусы ЛОС; ,H H′− главные точки ЛОС; 

ñâ1 ñâq,D D − световые диаметры первой и последней поверхностей ЛОС; sF – передний фокальный отрезок 
ЛОС.

пучка, zp – положение сечения перетяжки пре-
образуемого пучка относительно переднего 
фокуса ЛОС (см. рис. 1); 0h − размер основной 
моды преобразуемого пучка в плоскости 1O xy  
(по уровню амплитуды 1/е); ,m n−поперечные 

F



39“Оптический журнал”, 77, 2, 2010

индексы, 0 1 2, , , ...m n= ; ,m nH H − многочлены 
Чебышева–Эрмита; i−мнимая единица; 0R −
радиус кривизны волнового фронта преобра-
зуемого пучка в точке 1O . Здесь и далее радиус 
кривизны волнового фронта пучка приводится 
согласно правилу знаков в оптике.

Для определения поперечного размера выс-
ших поперечных мод можно воспользоваться 
введенным в работе [2] коэффициентом mK , 
который определяет увеличение размера пятна 
высшей поперечной моды (по уровню интен-
сивности 1/е2) по сравнению с основной модой. 
Поэтому для определения поперечного размера 
высших мод достаточно знать размер основной 
моды 00TEM . 

Представим разложение волновой аберраци-
онной функции реальной ЛОС по поперечным 
координатам ,ξ η  на выходной опорной сфере Σ  
в виде (см. рис. 1)

( )
2

2 4 6

2 2 2

2
( , ) ,

,

h
W h h h

f

h

ξ η χ α β γ

ξ η

=− + + +
′

= +
        

  (4)

где f ′−фокусное расстояние ЛОС. 
Коэффициенты разложения , ,χ α β  и γ  ха-

рактеризуют соответственно дефокусировку и 
аберрации ЛОС 3, 5 и 7-го порядков. В частном 
случае одной тонкой линзы ( )0 0χ =  они опреде-
ляются выражениями
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где 1 2,ρ − кривизна поверхностей линзы, ρ =

Ô1/R= − кривизна входной опорной сферы, 

Ô1/Rρ′ ′= −кривизна выходной опорной сферы. 
Кривизна входной и выходной опорных сфер 

определяется соответственно через параксиаль-
ные параметры преобразуемого и преобразован-
ного пучков
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где par,kz′ −параметр конфокальности выходного 
параксиального пучка; par,ps′ − положение сече-
ния перетяжки выходного параксиального пучка 
относительно последней поверхности ЛОС.

Согласно скалярной теории дифракции Кирх-
гофа распределение поля излучения после ЛОС 
в произвольной точке ( )ÏÀ, ,Q x y z′ ′  плоскости 
анализа определяется дифракционным интегра-
лом [2, 4]
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Здесь ( , )ψ ξ η − амплитудно-фазовое распреде-
ление поля на выходной опорной сфере; PQr −
расстояние между произвольной точкой Р на 
выходной опорной сфере и точкой Q, в которой 
определяются амплитуда и фаза поля излучения; 
ϑ – угол между нормалью к волновому фронту и 
нормалью к сфере сравнения в точке P; θ−угол 
между осью ζ  и направлением от произвольной 
точки P к точке Q; dσ− элемент площади по-
верхности выходной опорной сферы Σ. Интеграл 
берется по поверхности Σ , определяемой свето-
вым отверстием ЛОС.

Выражение для распределения поля на вы-
ходной опорной сфере имеет вид

где β′−коэффициент, характеризующий из-
менение размера пучка между плоскостями 

1O xy  и qO ξη  и определяемый согласно правилу 
ABCD  [1, 2].

Вычисление дифракционного интеграла (5) с 
учетом (6) позволяет численно рассчитать поле 
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лазерного излучения на выходе реальной ЛОС 
и определить его искажения относительно па-
раксиального пучка. Если рассматривать ЛОС, 
для которой световые диаметры преломляющих 
поверхностей в 2,5–3,0 раза больше размера 
пучка на них, то искажения выходного лазер-
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ного излучения будут обусловлены главным об-
разом аберрациями ЛОС, а не дифракцией на 
оправах линз ЛОС. Поэтому рассмотрим этот слу-
чай и получим для сформированного идеальным 
резонатором многомодового лазерного излуче-
ния аналитическое выражение распределения 
поля на выходе ЛОС с учетом ее аберраций, что 
позволит провести анализ и описать аберра-
ционные искажения многомодового лазерного 
пучка. 

Чтобы получить приближенное аналитиче-
ское выражение распределения поля преобра-
зованного ЛОС пучка сделаем в (5) допущения: 
1) 1cosϑ≈ , 1cosθ≈  и в знаменателе подынте-
грального выражения PQ ÏÀr z≈ ; 2) представим 

PQr в фазовом множителе подынтегрального вы-
ражения в виде степенного ряда Тейлора, учиты-
вая члены до восьмого порядка малости.

В результате получаем, что показатель экс-
поненциального множителя подынтегрального 
выражения содержит многочлен восьмой сте-
пени. Такой интеграл не может быть выражен 
в элементарных функциях. Чтобы получить 
приближенное амплитудно-фазовое распреде-
ление поля, проведем экономизацию многочле-
на экспоненциального множителя с помощью 
полиномов Чебышева на каноническом отрезке 

0 1[ , ]+ [5]. Ограничиваясь полиномом Чебышева 
первого порядка, дифракционный интеграл (5) 
можно представить в виде
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Здесь величины maxh  и maxh′  характеризуют мак-
симальные размеры областей на выходной опор-
ной сфере и в плоскости анализа выходного поля. 
В указанных областях сосредоточена основная 
часть энергии произвольной поперечной моды 

излучения, долю которой определяет сам раз-
работчик. 

В результате экономизации функции волно-
вой аберрации выделен коэффициент eqχ , кото-
рый учитывает основную часть аберраций ЛОС.
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Расширяя в (7) пределы интегрирования до 
±∞, после аналитического интегрирования по-

лучаем распределения амплитуды и фазы пучка 
с учетом аберраций ЛОС

где обобщенные зависимости лазерного пучка 
определяются выражениями

Здесь ( )ab ÏÀh z′ −размер пучка в плоскости ана-
лиза, ( )ab ÏÀR z′ − радиус кривизны волнового 
фронта на оси в плоскости анализа.

Пучок, для которого распределения ампли-
туды и фазы определяются (8), а обобщенные за-
висимости (9), назовем аберрационным эрмито-
гауссовым пучком.

Необходимо отметить, что анализ аберраци-
онных искажений лазерного излучения на вы -
ходе ЛОС можно проводить методом лучевого 
пакета [3]. В этом методе амплитуда поля из-
лучения на выходе ЛОС находится из закона 
сохранения энергии. Таким образом, можно 
рассчитать поле лазерного излучения на выходе 
реальной ЛОС путем численного интегрирова-
ния (5) с учетом (6) и методом лучевого пакета и 
определить отклонение этих полей относительно 
параксиального или аберрационного эрмито-
гауссова пучков.

Обобщенные зависимости и параметры 
аберрационного эрмито-гауссова пучка

Из выражений (9) для ( )ab ÏÀh z′  и ( )ÏÀabR z′  
определяем соответственно положения плоско-
стей анализа, в которых аберрационный эрми-
то-гауссов пучок имеет минимальный размер 
( ab,ps′ ), и плоский волновой фронт ( Rs′ )
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Найденные из уравнений (10) сечения пере-
тяжки пучка ab,ps′  и плоского волнового фронта 

Rs′  в общем случае не совпадают, т. е. волновой 
фронт аберрационного эрмито-гауссова пучка в 
сечении перетяжки не является плоским. Од-
нако на практике ab,ps′  и Rs′  весьма близки, т. е. 
отклонение поверхности волнового фронта слабо 
искаженного выходного эрмито-гауссова пучка 
от плоскости перетяжки незначительно.

Если в качестве плоскости анализа выбрать 
сечение перетяжки аберрационного эрмито-
гауссова пучка ( ÏÀ ab,pz s′= ), то изменения раз-
мера и радиуса кривизны волнового фронта 
пучка от продольной координаты z′, отсчиты-
ваемой от данного сечения перетяжки, имеют 
вид (см. рис. 1)
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где ( )2 2/,abkz B A B′ ′= + − параметр конфокаль-
ности аберрационного пучка, ( )1 1 ab,pz sμ μ′ ′ ′= + , 

( )ab,pA A z s′ ′ ′= + .
Из выражения (11) для ( )abh z′ ′  получаем фор-

мулы для размера перетяжки и угловой расходи-
мости аберрационного эрмито-гауссова пучка:
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где

а зависимости для выходного параксиального 
пучка имеют вид
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Обычно реальный пучок на выходе ЛОС го-
раздо ближе к аберрационному, чем к паракси-
альному пучку. Поэтому оценку искажений его 
амплитудно-фазового распределения, а также 
зависимости размера пучка адекватнее рас-
сматривать по отношению к аберрационному 
эрмито-гауссову пучку. Отклонение же по-
ложения сечения перетяжки реального пучка 
правильнее рассматривать относительно парак-
сиального пучка.

Пример численного расчета искажений 
на выходе реальной ЛОС

Рассмотрим преобразование гауссова пуч-
ка ( 1 06,λ=  мкм, 5000 0,kz = мм, 88 0,pz =− мм) 
ЛОС с параметрами 1 24 770,r = мм, 1 506,n= , 

2 149 634,r =−  мм. Чтобы оценить искажения 
поля пучка на выходе ЛОС был проведен рас-
чет дифракционного интеграла (5) и рассчитано 
преобразование пучка ЛОС методом лучевого 
пакета. 

На рис. 2 для плоскости анализа zПА =
= 42,182 мм показаны функции отклонений 
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Рис. 2. Искажения поля лазерного пучка на выхо-
де ЛОС для плоскости анализа ÏÀ 42 182,z =  мм. 
Функции отклонения распределения амплиту-
ды от идеального распределения, полученные 
расчетом дифракционного интеграла (1) и ме-
тодом лучевого пакета (2). 

Аберрационные функции 
искажений лазерного излучения 

на выходе реальной ЛОС

Введенные функции искажений лазерного из-
лучения (см. (2)) в случае учета аберраций ЛОС 
имеют вид
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распределений амплитуды от идеального рас-
пределения.

На рис. 3 представлены зависимости оги-
бающей пучка на выходе ЛОС, рассчитанные 
по параксиальной формуле (кривая 1), методом 
лучевого пакета (кривая 2), расчета дифракци-
онного интеграла (5) (кривая 3) и по формуле 
(9) настоящей работы (кривая 4). Продольная 
координата на рисунке отсчитывается от центра 
параксиальной перетяжки.

Из рис. 2 видно, что искажения поля, рас-
считанные методом дифракционного интеграла, 
малы по сравнению с рассчитанными методом 
лучевого пакета. Зависимости огибающей пучка 
на выходе ЛОС, представленные на рис. 3, пока-
зывают: 1) перетяжка пучка, полученная расче-
том дифракционного интеграла, смещена в сто -
рону плоскости идеальной перетяжки; 2) пара-
метр конфокальности выходного пучка, полу-
ченный расчетом дифракционного интеграла, 
оказался больше, чем параметр параксиального 
пучка. 

Заключение

В работе введены функции искажений поля 
и искажения параметров лазерного излучения. 
Получено выражение, позволяющее путем чис-
ленного расчета получить распределение поля 
на выходе ЛОС с учетом ее аберраций и дифрак-
ции на оправах линз. Приведены приближенные 
аналитические выражения для амплитудно-
фазового распределения поля и параметров ла-
зерного пучка на выходе аберрационной ЛОС. 
Введение обобщенных параметров, используе-
мых для описания идеального гауссова пучка, 
позволило сохранить структуру выражений 
амплитудно-фазового распределения поля, раз-
мера пучка, угловой расходимости. Приведены 
аберрационные функции искажений лазерного 
излучения на выходе ЛОС.

Введенные функции искажений лазерного 
пучка можно использовать для задания ис-
каженного поля, сформированного реальным 
резонатором.
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Рис. 3. Рассчитанные зависимости огибающей 
пучка на выходе ЛОС. 1 – параксиальное при-
ближение, 2 – метод лучевого пакета, 3 – расчет 
дифракционного интеграла; 4 – формула (9) 
настоящей работы.


