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ЛАЗЕРНАЯ ФИЗИКА И ТЕХНИКА

Введение

Методы генерации лазерного излучения с 
короткой длительностью импульса (пикосе-
кунды, фемтосекунды) в видимом и ближнем 
инфракрасном (ИК) диапазонах основаны, как 
правило, на чирпировании импульсов с помощью 
фазовой модуляции светового поля при его само-
воздействии в нелинейной среде с последующей 
компенсацией “чирпа” в среде с линейной дис-
персией [1]. Для генерации коротких импульсов 
в среднем ИК диапазоне используются другие 
методы [2], так как применение компрессии им-
пульса в традиционном виде в этом спектральном 
диапазоне невозможно из-за отсутствия светово-
дов необходимого качества.

Одним из таких методов является преобразо-
вание частоты лазерного излучения с помощью 
вынужденного комбинационного рассеяния 
(ВКР) в нелинейных кристаллах типа прустита 
(Ag3AsS3) или тиогаллата серебра (AgGaS2) [3, 4]. 

В качестве источника излучения накачки обычно 
используется излучение короткоимпульсного 
YAG:Nd-лазера. Однако в этом случае нелиней-
ные кристаллы должны удовлетворять достаточ-
но жестким требованиям к области прозрачности 
материала и условиям фазового синхронизма 
из-за того, что длины волн излучения накачки и 
сигнальной волны сильно разнесены. Эти усло-
вия существенно влияют на квантовую эффектив-
ность преобразования частоты излучения.

В работе [5] впервые была предложена СО2-
лазерная система, в которой короткий импульс 
формируется за счет его “вырезания” из длинного 
(около микросекунды) импульса гибридного 
СО2-лазера с помощью оптически управляемых 
полупроводниковых ключей. При этом передний 
фронт импульса формируется при отражении от 
одного “плазменного зеркала”, а задний фронт – 
при прохождении через полупроводник, на по-
верхности которого плазменное зеркало вклю-
чается с задержкой относительно первого. Это 
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позволяет формировать импульсы ИК диапазона 
длительностью от единиц до сотен пикосекунд. 
Развитие метода оптически управляемых по-
лупроводниковых ключей привело к созданию 
[6] первой в мире пикосекундной тераваттной 
СО2-лазерной установки. Такие установки могут 
использоваться для решении ряда фундаменталь-
ных и прикладных исследований, связанных с 
ускорением элементарных частиц в поле мощ-
ной световой волны, туннельной ионизацией 
газов, управлением молниевым разрядом в ат-
мосфере [7].

В данной работе рассматривается пикосекунд-
ная лазерная система, построенная на основе 
гибридного СО2-лазера с использованием метода 
оптически управляемых полупроводниковых 
ключей и с последующим преобразованием излу-
чения в нелинейных кристаллах за счет процессов 
генерации второй гармоники (ГВГ). В качестве 
кристаллов для ГВГ используются селеногаллат 
серебра AgGaSe2 и дифосфид цинка-германия 
ZnGeP2. Такой подход позволяет осуществить 
преобразование излучения пикосекундного СО2-
лазера с плавной перестройкой длины волны в 
диапазоне 9,4–10,6 мкм в лазерное излучение с 
длинами волн в диапазонах от 4,7 мкм до 5,3 мкм 
и от 2,4 мкм до 2,65 мкм.

Описание пикосекундной
СО2-лазерной установки

В основе лазерной установки – генератор ин-
фракрасных лазерных импульсов на базе гибрид-
ного одночастотного одномодового СО2-лазера 
с перестраиваемой длиной волны излучения 
9,4–10,6 мкм. 

В состав установки входят (рис. 1): гибрид-
ный СО2-лазер, твердотельный пикосекундный 
Nd-лазер для управления полупроводниковыми 
ключами, блок полупроводниковых (германие-
вых) ключей для формирования пикосекундного 
импульса, аппаратура регистрации параметров 
излучения лазера. 

Гибридный СО2-лазер. Гибридный СО2-лазер 
(ГЛ) формирует лазерный импульс с длительно-
стью 300 нс и мощностью излучения 0,3 МВт. 
В состав ГЛ (рис. 1) входят две газоразрядные ка-
меры (ГРК). Первая камера (3) – ТЕА-секция или 
камера атмосферного давления (КАД) – работает 
при атмосферном или близком к нему давлении. 
Вторая камера (4) – камера низкого давления 
(КНД) – работает при давлении лазерной смеси 
около 9 Тор. В качестве камеры низкого давле-
ния использована трубка промышленного лазера 

ЛГИ-50 с параметрами: диаметр активной сре-
ды – 2 см, длина активной среды – 1 м. 

В гибридной схеме лазера обе разрядные каме-
ры размещаются в едином резонаторе. В резуль-
тате на спектральный контур усиления атмосфер-
ной секции (полуширина 3 ГГц) накладывается 
узкий контур усиления секции низкого давления 
(около 50 МГц). При зарождении генерации 
в резонаторе преимуществом обладает только 
одна продольная мода вблизи центра выбранной 
линии генерации СО2, чем и обеспечивается одно-
частотность выходного излучения и плавность 
формы импульса генерации.

Управление длиной волны излучения по ли-
ниям Р- и R-ветви молекулы СО2 обеспечивается 
дифракционной решеткой (5) (100 штр/мм), 
используемой в качестве выходного зеркала 
резонатора. 

Резонатор собирается из оптических элемен-
тов (1, 2, 5) по устойчивой схеме для получения 
плавного профиля интенсивности в поперечном 
сечении выходного пучка, близкого к гауссо-
вому профилю. Для получения максимального 
резонаторного объема без нарушения условий 
формирования одночастотного излучения база 
резонатора выбрана равной 4 м, для которой 
поперечный размер нулевой моды генерации 
составляет 15 мм. Увеличение базы больше 5 м 
нежелательно из-за возможности нарушения 
одночастотности излучения, так как с ростом 
базы резонатора уменьшается частотный интер-
вал между продольными модами и в контур уси-
ления секции низкого давления может попасть 
больше одной моды. 

Управление временем заряда и разряда ем-
костных накопителей энергии импульсного 
модулятора камеры атмосферного давления (3) 
осуществляется от блока синхронизации. Дли-
тельность объемного горения разряда в КАД не 
превышает 1 мкс. Применяемая рабочая смесь 
газов СО2:N2:Не = 1:1:8. Напряженность электри-
ческого поля в объемном самостоятельном разря-
де составляет 7,8 кВ/см. При этом в разряд может 
вкладываться удельная энергия до 150 Дж/литр. 
Пиковая мощность в импульсе излучения ГЛ 
составляет 0,35 МВт в одночастотном режиме и 
0,61 МВт в режиме свободной генерации (с от-
ключенным электропитанием секции низкого 
давления). При одночастотной генерации задаю-
щего генератора (ЗГ) длительность импульса по 
уровню 0,5 составляет 300 нс.

Для выполнения требований по совпадению 
временного положения импульса излучения 
Nd-лазера, управляющего полупроводниковы-
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�9  2009-.indd   7 24.08.2009   9:30:50



8 “Оптический журнал”, 76, 9, 2009

ми ключами, и максимума импульса излучения 
гибридного CO2-лазера была разработана схема 
синхронизации с запуском КАД импульсом 
лавинного транзистора (42), соответствующим 
моменту начала формирования цуга генерации 
в задающем генераторе Nd-лазера. Суммар-
ная задержка импульса генерации составляет 
3,2 мкс. 

Твердотельный Nd-лазер. Твердотельный 
лазер на неодимовом стекле (Nd-лазер) обеспе-
чивает управление работой полупроводниковых 
ключей, с помощью которых из импульса гибрид-
ного СО2-лазера вырезается лазерный импульс с 
переменной длительностью – от 10 пс до 300 пс. 
В состав Nd-лазера входят задающий генератор 
с пассивной синхронизацией мод, система изо-
ляции лазерного усилителя, система вырезания 
одиночного импульса из цуга, система формиро-
вания пространственного профиля пучка, лазер-
ный усилитель, система юстировки.

Задающий генератор Nd-лазера (ЗГЛ) по-
строен на активном элементе (5) из фосфатного 
неодимового стекла ГЛС-22 ∅ 6,3×75 мм со ско-
шенными под углом Брюстера торцами, который 
помещен в квантрон К104Г. Брюстеровские ско-
сы торцов уменьшают плотность светового пучка 
в активной среде в 1,6 раза и потери энергии в 
резонаторе. Режим работы – пассивная самосин-
хронизация мод (ПСМ) резонатора, позволяющая 
при использовании насыщающегося поглотителя 
с малым временем релаксации получить наиболее 
короткие длительности импульсов – единицы 
пикосекунд и меньше.

Система вырезания одиночного импульса вы-
деляет один импульс из цуга импульсов. В состав 
системы входит разрядник высокого давления с 
лазерным поджигом (15) и ячейка Поккельса (22) 
с двумя поляризаторами (21, 23). Выбор номера 
выделяемого импульса из цуга осуществляется 
подборкой ослабляющих фильтров перед раз-
рядником высокого давления. 

Система формирования пространственного 
профиля пучка включает в себя диафрагму (24) 
и расширяющий телескоп Галилея (25–26). Диа-
фрагма вырезает основной керн Эйри распределе-
ния пучка (5 мм). Увеличение телескопа – 5.

В качестве лазерного усилителя используется 
активный элемент (27) ∅30×630 мм в четырех-
ламповом осветителе. Усилитель однопроходный, 
с четвертьволновой развязкой. Далее, пучок диа-
метром 25 мм транспортируется в зону располо-
жения полупроводниковых ключей. Его диаметр 
уменьшается с помощью длиннофокусной фоку-
сирующей линзы (29а) до требуемого размера.

Система юстировки Nd-лазера включает в 
себя непрерывный лазер на алюмо-иттриевом 
гранате с диодной накачкой (мощность 50 мВт) 
(4) и систему призм (3, 2) для чввода пучка в диа-
фрагму (7) резонатора ЗГЛ. Система юстировки 
позволяет с достаточно высокой точностью юсти-
ровать всю систему и совмещать зоны попадания 
на полупроводниковые ключи излучения гиб-
ридного СО2-лазера и Nd-лазера.

Блок полупроводниковых ключей. Блок 
ключей (оптические элементы 8, 9 и 31а–39а) 
позволяет формировать короткие импульсы ИК 
излучения с длиной волны 10 мкм и контрастом 
импульса 105.

Принцип действия ключа основан на измене-
нии коэффициента отражения полупроводнико -
вого материала под действием излучения Nd-ла-
зера с пикосекундной длительностью импульса.

Работа блока заключается в следующем. Излу-
чение СО2-лазера с поляризацией в горизонталь-
ной плоскости попадает на клиновидную пластину 
из Ge (8) под углом Брюстера. В этих условиях 
(р-поляризованное излучения) отражение отсут-
ствует. В момент достижения максимальной мощ-
ности излучения СО2-лазера в область падения на 
Ge излучения СО2-лазера направляется импульс 
Nd-лазера пикосекундной длительности. Этот 
импульс вызывает в тонком приповерхностном 
слое полупроводника переходы электронов в зону 
проводимости, благодаря которым материал на 
некоторое время становится высокоотражающим 
для излучения с длиной волны 10,6 мкм. Так 
формируется передний фронт 10-ти мкм излуче-
ния (полупроводниковый оптический ключ (8) 
работает на отражение). Задний фронт импульса 
формируется при прохождении второго полупро-
водника из Ge (9), на который импульс Nd-лазера 
подается с заданной временной задержкой.

Для реализации метода управляемых по-
лупроводниковых ключей в разработанной 
лазерной системе выполняются следующие до-
полнительные условия: 

– обеспечена высокая степень поляризации 
излучения гибридного СО2-лазера (не хуже 106 
по интенсивности), 

– отклонение угла падения пучка на герма-
ниевую пластину от угла Брюстера не превышает 
0,5 мрад, 

– отклонение волнового фронта излучения 
СО2-лазера от плоского составляет не более 
0,5 мрад, для выполнения этого требования 
перетяжка гауссового пучка гибридного лазера 
с помощью сферического зеркала изображается 
в плоскость Ge-клина,
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– обеспечено совпадение плоскости поляри-
зации выходного пучка гибридного СО2-лазера 
и плоскости падения на Ge-клин с точностью не 
хуже 1 мрад. 

Аппаратура регистрации длительности 
пикосекундных лазерных ИК импульсов

Для регистрации длительности формируе-
мых пикосекундных инфракрасных импульсов 
используется метод ап-конверсии [8] с регистра-
цией видимого света электронно-оптической 
камерой типа К-008 с временным разрешением 
не хуже 20 пс.

Методом ап-конверсии преобразование излу-
чения с длиной волны 10,6 мкм в видимый свет 
осуществляется в два этапа (рис. 2). На первом 

этапе в кристалле GaSe (12) излучение с выхода 
лазерной системы смешивается с излучением 
вспомогательного твердотельного лазера (2) с 
длиной волны 1,06 мкм. На втором этапе с выхода 
первого кристалла излучение суммарной частоты 
вместе с вспомогательным излучением поступа-
ет на другой кристалл – титанил-фосфат калия 
(KTiOPO4) (13), где преобразуется в видимый свет 
и далее подается в объектив стрик-камеры (15). 
Развертка стрик-камеры выводится непосред-
ственно на экран управляющего компьютера. 
Компьютер обрабатывает полученные сигналы и 
выдает информацию о форме диагностируемого 
импульса в виде денситограммы (рис. 3).

В экспериментах было показано, что при ис-
пользовании одного полупроводникового ключа, 
когда длительность выходного импульса опреде-

1

23 4

4

5

6 778 8
9

9

13

11

1412
15

Блок 
питания

Блок 
питания

Блок 
управления

Рис. 2. Общий вид схемы измерения длительности импульса излучения на выходе задающего генера-
тора с использованием метода двухкаскадного преобразования излучения с λ = 10,6 мкм в излучение с 
λ = 0,506 мкм (ап-конверсии). 1 – ИК импульс, 2 – квантрон генератора одномодовых одночастотных ли-
нейно поляризованных 30 нс импульсов (1,06 мкм), 3 – квантрон усилителя, 4 – глухие зеркала (1,06 мкм), 
5 – полупрозрачные зеркала (1,06 мкм), 6 – электрооптический затвор-модулятор добротности с блоком 
управления, 7 – интерферометры Фабри–Перо, 8 – жесткие диафрагмы, 9 – линзы воздушного простран-
ственного фильтра, 10 – глухие зеркала линии оптической задержки импульса излучения 10,6 мкм, 
11 – зеркало сведения сигнального пучка и пучка излучения накачки (прозрачное при λ = 10,6 мкм и 
отражающее при λ = 1,06 мкм), 12 – первый каскад преобразования сложением частот (пластина из 
GaSe), 13 – второй каскад преобразования (кристалл КТР), 14 – светофильтр, пропускающий излучение 
0,506 мкм и поглощающий остальные составляющие, 15 – стрик-камера – узел измерения длительности 
и формы пикосекундных импульсов.
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ляется только физическими свойствами герма-
ния и параметрами управляющего импульса 
Nd-лазера, формируется импульс с достаточно 
плоской вершиной и длительностью на полувы-
соте порядка 500 пс. Постоянная времени вы-
ключения ключа, оцененная по срезу импульса, 
составляет примерно 300 пс, а длительность 
плоской части около 330 пс. Использование вто-
рого ключа обеспечивает снижение длительности 
среза формируемого импульса до уровня длитель-
ности фронта (рис. 3). Минимально зафиксиро-
ванная длительность импульса в экспериментах 
составила примерно 150 пс по полувысоте и огра-
ничивалась формой импульса Nd-лазера.

Двухступенчатое преобразование 
излучения СО2-лазера за счет процессов 

ГВГ в нелинейных кристаллах

Для ГВГ излучения СО2-лазера (для обеих сту-
пеней преобразования) был выбран вариант фа-
зового синхронизма 1-го типа как наиболее легко 
реализуемый и дающий относительно высокий 
КПД преобразования. При этом смешиваются 
волны с одинаковой поляризацией (фактически 
используется одна волна). Для отрицательного 

кристалла первой ступени – это обыкновенные 
волны, для положительного кристалла второй 
ступени – необыкновенные. Для генерации вто-
рой гармоники излучения СО2-лазера был выбран 
AgGaSe2, а четвертой гармоники – ZnGeP2. Опти-
ческие, теплофизические и другие свойства этих 
кристаллов подробно описаны в работе [9].

Для получения ГВГ необходимо сориентиро-
вать кристаллы относительно падающего пучка 
так, чтобы обеспечить необходимый угол син-
хронизма. Установка угла фазового синхронизма 
проводится путем варьирования пространствен-
ного угла наклона кристалла по отношению к 
падающему пучку и нахождения положения, 
соответствующего максимальной эффектив-
ности преобразования. Определение коэффици-
ента преобразования (эффективности) прово-
дится измерением соотношения энергии преоб-
разованного излучения по отношению к энергии 
падающего пучка с введением соответствующих 
коэффициентов, учитывающих отражение на по-
верхностях кристалла и ослабителей (фильтров), 
присутствующих в оптической схеме.

Исследования проводились при длительности 
импульса излучения 300 нс. Длина используемого 
кристалла равна 20 мм при квадратном сечении 
8×8 мм, угол среза θср = 55,3° ± 0,5° (угол между 
нормалью к поверхности кристалла и оптической 
осью кристалла Z) соответствовал углу синхрониз-
ма при нормальном падении на переднюю грань 
кристалла излучения с длиной волны 10,6 мкм. 
Кристалл был изготовлен в ООО “ЛЕА”, Ново-
сибирск.

На рис. 4 приведена схема эксперимента по 
получению ГВГ излучения с λ = 9,55 мкм (первая 
ступень преобразования). Излучение гибридного 
СО2-лазера проходит (справа налево) через блок 
ослабителей (1), после чего отраженный от перед-
ней грани кристалла селеногаллата серебра (2) 

235,5 пс

(б)

(а)

Рис. 3. Кадр (а), зарегистрированный стрик-
камерой. Развертка по горизонтали – 3 нс/см. 
Задний фронт импульса ограничен оптическим 
ключом. Денситограмма кадра (б), изображен-
ного на рис. 3а.

12

34

5

λ = 4,776 мкм

λ = 4,776 мкм
λ = 9,552 мкм

λ = 9,552 мкм

Рис. 4. Схема эксперимента по ГВГ с селено-
галлатом серебра и длиной волны излучения 
9,5525 мкм. 1 – блок ослабителей, 2 – кристалл 
селеногаллата серебра, 3 – сапфировый фильтр, 
4 – пироэлектрический приемник J3-09, 5 – пи-
роэлектрический приемник ПЭДИ.
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пучок попадает на пироэлектрический приемник 
ПЭДИ (5). Прошедший пучок, представляющей 
собой излучение с двумя длинами волн – ис-
ходной волны накачки и второй гармоники, 
проходит через сапфировую пластину (3), где на-
качка фильтруется, а вторая гармоника попадает 
в пироэлектрический приемник J3-09 (4).

Для выполнения условий генерации второй 
гармоники с оое-типом взаимодействия исходное 
излучение имело горизонтальную поляризацию. 
Главная плоскость кристалла располагается вер-
тикально вдоль направления распространения 
пучка. Теоретический расчет для длины волны 
λ = 9,55 мкм дает угол θс = 49,6°, который хоро-
шо согласуется с экспериментально измеренным 
углом [9]. Отметим, что расчетный угол синхро-
низма для рабочей длины волны 10,591 мкм, 
 получаемый по приведенным формулам, состав-
ляет 55,46°, что также хорошо совпадает с дан-
ными работы [9] и паспортными данными иссле-
дуемого кристалла (θс = 55,3°). Для ориентации 
кристалла использовался экран с отверстием для 
падающего пучка юстировочного He-Ne-лазера. 
Угол установки вычислялся и выставлялся из 
простого геометрического построения.

Результаты экспериментов по нахождению 
максимальных коэффициентов преобразования 
η излучения на длине волны 9,55 мкм при из-
менении угла падения излучения на кристалл 
приведены на рис. 5, а в таблице представлены 
экспериментальные значения максимальных η и 
их теоретические оценки при различной энергии 
лазерного импульса. Расчеты проводились по 
формуле для ГВГ из работы [10]

7 5 2 2
22 1

2 2
1 1 2 2

2
2
k LP d L P

P cn n A

Δπ
η

λ

⎛ ⎞⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜⎝ ⎠
sinc .

         

(1)

Здесь в системе CGS: [d] = см/дин1/2, [L] = см, 
[P] = эрг/с, [λ] = см, [A] = см2, [c] = 3×1010 см/с. Из 
формулы видно, что эффективность преобразова-
ния пропорциональна интенсивности излучения 
на кристалле, квадрату длины кристалла, ква-
драту эффективной нелинейности (“параметру 
качества” d2/(n1

2n2)) и величине

2
2 2

2 22
k L k L k LΔ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟=⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎟ ⎜ ⎜⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠

sinc sin ,

       

(2)

характеризующей влияние волновой расстройки 
на эффективность преобразования. Для прибли-
женных расчетов можно принять, что расстройка 
мала и этот множитель равен 1.

Экспериментальный коэффициент преобразо-
вания η вычислялся по формуле

ïðåîáð ïàä/Å Åη= ,
                          (3)

где Епад – энергия излучения, падающего на 
кристалл AgGaSe2 , и определяемая по показа-
ниям пироэлектрического приемника ПЭДИ 
(UПЭДИ), Епреобр – энергия излучения с удвоенной 
частотой, которая рассчитывается следующим 
образом: 

ïðåîáð J31 16 /1450Å U= , ( ).

Здесь UJ3 – показания приемника J3-09 (мВ); 
1450 мВ/мДж – калибровочный коэффициент 
приемника J3-09 на длине волны 5,3 мкм; 1,16 – 
коэффициент, учитывающий френелевские по-
тери на пластине сапфира.

В расчетах использовались следующие па-
раметры: n1 = 2,596; λ2 = 4,776×10–4 см; d =
= 4×10–11 м/В; А = 0,126 см2 (диаметр пучка 
0,4 см), L = 2 см, длительность импульса τ =
 = 300 нс. 

Из таблицы видно, что экспериментальные 
значения коэффициентов преобразования при-
близительно в 2,5 раза больше расчетных. Од-
ним из объяснений этого расхождения может 
быть завышенная площадь пятна на кристалле, 
так как брался диаметр пучка 0,4 см по уровню
1/e2 гауссового пучка, а следовательно и меньшая 
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Рис. 5. Зависимость отношения энергии излу-
чения второй гармоники к квадрату падающей 
энергии от угла падения на кристалл.
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интенсивность. Тем не менее, полученные коэф-
фициенты преобразования на порядок меньше 
предельно достижимых значений 5–8% [10].

Исследования по ГВГ излучения СО2-лазера 
на длине волны 10,591 мкм показали, что мак-
симальный коэффициент преобразования ГВГ 
составляет 0,3%–0,4%, что также ниже теоре-
тических значений.

Общая невысокая эффективность ГВГ в дан-
ных экспериментах связана с невозможностью 
обеспечить в них предельную интенсивность 
излучения в кристалле. Справочные данные для 
чистого кристалла селеногаллата серебра дают 
значения порога пробоя по плотности энергии 
2 Дж/см2 и по интенсивности 15 МВт/см2 [10]. 
В представленных в статье экспериментах мак-
симальное значение интенсивности на кристалле 
составило 5 МВт/см2 при плотности энергии 
1,4 Дж/см2. Увеличение интенсивности в усло-
виях фиксированной длительности и энергии 
импульса возможно только за счет уменьшения 
сечения пучка. Уменьшать сечение пучка было 
нельзя из опасения повреждения кристалла при 
приближении к порогу пробоя по энергии. 

Для генерации 4-ой гармоники излучения 
на длине волны 2,648 мкм используется второй 
каскад преобразования излучения задающего 
генератора. Из формулы (1) видно, что отношение 
эффективностей преобразования излучения двух 
кристаллов можно оценить с помощью выраже-
ния (поглощением пренебрегаем)

2 3IýôôII II
3 2

I I IIýôô

d n

n d

η
η

≈ .
                    

 (4)

Здесь dэфф – эффективные коэффициенты нели-
нейности, n – средние показатели преломления 
кристаллов. Или

2 2 3I IcII II
2 2 3

I II IIc I

2d n

d n

θη
η θ

≈
sin ( )

.
sin ( )                     

(5)

Здесь θIc , θIIc – углы синхронизма кристаллов 
для данной длины волны. Оценки, проведенные 

по уравнению (5), показывают, что вследствие 
существенно большего значения эффективного 
коэффициента нелинейности ZnGeP2 дает суще-
ственный выигрыш в эффективности по сравне-
нию с селеногаллатом серебра при преобразова-
нии излучения с длиной волны 5,3 мкм во вторую 
гармонику при прочих равных условиях.

Для длины волны 5,3 мкм углы синхрониз-
ма селеногаллата серебра и фосфида цинка-
германия составляют приблизительно 41° и 47° 
соответственно. При этом величины d, n равны 
45 пм/В, 2,6 и 70 пм/В, 3,2 соответственно. Под-
ставив эти значения в выражение (5), получим

II I/ 3η η ≈ .

Проведенный количественный расчет опти-
мальной длины кристалла ZnGeP2 для получе-
ния четвертой гармоники дает значение 15 мм 
(на результат существенно влияют используемые 
в расчетах значения коэффициентов поглощения 
волны накачки и генерируемой гармоники). Для 
обеспечения необходимой интенсивности излу-
чения в кристалле между кристаллами первого 
и второго каскадов ГВГ размещается оптическая 
схема изображения перетяжки гауссового пучка 
с уменьшением его диаметра до 1 мм. При этом 
интенсивность излучения накачки в кристалле 
составляла примерно 0,16 МВт/см2.

По методике, изложенной выше, были прове-
дены исследования эффективности преобразова-
ния излучения с длиной волны 5,3 мкм в длину 
волны 2,65 мкм в кристалле ZnGeP2 размером 
5×5×15 мм изготовления ООО “ЛОК”, Томск. 
Кристалл был вырезан так, что условия синхро-
низма выполнялись при нормальном падении 
излучения с длиной волны 5,3 мкм на переднюю 
грань кристалла. Однако, максимальная эф-
фективность преобразования была получена при 
наклоне кристалла на 0,5° в плоскости поляриза-
ции излучения 5,3 мкм. При этом эффективность 
преобразования составила значение порядка 
8%. Максимально достижимая эффективность 

Экспериментальные и расчетные значения коэффициентов преобразования частоты лазерного излучения

№ UПЭДИ, мВ UJ3, мВ
Энергия 

падающая Епад, 
мДж

Энергия 
преобразованная 

Епреобр., мДж

Коэфф. преобр., η 
(эксперим.)

Коэфф. преобр., η 
(расчет)

1

2

3

4

250

240

210

230

390

375

380

390

67,2

58,0

58,0

62,6

0,311

0,300

0,303

0,311

0,46%

0,52%

0,52%

0,50%

0,214%

0,185%

0,185%

0,199%

�9  2009-.indd   12 24.08.2009   9:30:52



13“Оптический журнал”, 76, 9, 2009

преобразования имеет значение порядка 30% 
[11]. Отличие полученной авторами эффектив-
ности от достигнутой в работе [11] опять же, как 
и в случае преобразования излучения с λ = 10,6 
в излучение с λ = 5,3 мкм объясняется меньшей 
интенсивностью излучения накачки, ограничен-
ной в описываемом случае лучевой прочностью 
по энергии. 

Таким образом, общая эффективность пре-
образования по энергии излучения с длиной 
волны 10,6 мкм в излучение с длиной волны 
2,65 мкм составила 4×10–4 или 0,04% при энер-
гии выходного импульса 35 мкДж. Основным 
отличием полученных авторами результатов от 
результатов работы [11], где в аналогичной схеме 
была получена общая эффективность преобразо-
вания порядка 10%, состоит в первую очередь в 
длительности импульса лазера накачки. Значи-
тельно меньшая (1,5–2 нс) в отличие от нашей 
(300 нс) длительность импульса позволяла в 
[11] обеспечить оптимальные (максимальные) 
интенсивности излучения в кристаллах. Кроме 
того, в первом каскаде преобразования в [11] 
использовался кристалл длиной 4 см (в данной 
работе – 2 см), недоступный нам по технологи-
ческим причинам.

Заключение

В результате проведенных исследований 
разработана лазерная установка для генерации 
пикосекундных инфракрасных импульсов. Ис-
следованы ее основные режимы работы и техни-
ческие характеристики, показана возможность 
получения генерации в трех спектральных диа-
пазонах: от 9,4 мкм до 10,6; от 4,7 мкм до 5,3 мкм 
и от 2,4 мкм до 2,65 мкм.

Установка отличается от известных аналогов 
[11] возможностью генерации импульсов не 
только в широком спектральном диапазоне, но и 
в широком диапазоне длительностей импульсов 
от 100 пс до 300 нс. Кроме того, при повышении 
эффективности преобразования излучения и при 
использовании методов параметрической генера-
ции в нелинейных кристаллах установка имеет 
перспективы развития в направлении расши-
рения спектрального диапазона генерируемого 
излучения. 

Данные исследования частично выполнены в 
рамках проекта МНТЦ № 2521.
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