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Аннотация
Предмет исследования. Наноразмерный кварц, выделенный из кварцевых жил шунгитовых 

пород Карелии. Цель работы. Получение и исследование наночастиц кварца шунгитовых пород, 
сравнение их структурных и спектральных характеристик с характеристиками природного квар-
ца традиционных месторождений для оценки применения в оптике и биомедицине. Метод. Ис-
следуемые образцы из секущих шунгитовых пород кварцевых жил и образцы сравнения подго-
тавливались одинаково: измельчались, промывались, переводились в дисперсию и центрифуги-
ровались. Порошки и конденсаты наночастиц кварца анализировались методами рентгенострук-
турного анализа, комбинационного рассеяния света и сканирующей электронной микроскопии. 
Размер наночастиц кварца в водной дисперсии оценивался по данным динамического светорассе-
яния. Основные результаты. По данным рентгеноструктурного анализа кварц шунгитовых пород 
отнесен к низкотемпературному -кварцу тетрагональной структуры (пространственная группа 
Р41212) и имеет близкий размер кристаллитов (меньше 100 нм). Определены параметры кристал-
лической решетки и области когерентного рассеяния жильного-кварца шунгитовых пород после 
различных обработок исследуемых образцов (диспергирование, обработка водой, ультразвуком). 
Наночастицы кварца выделены и стабилизированы в водной дисперсии. Средний размер наночастиц 
кварца в водной дисперсии по данным динамического светорассеяния составляет 158,7 ± 89,8 нм. 
Это совпадает с размером частиц в пленках конденсата дисперсии, полученным методом сканиру-
ющей электронной микроскопии. Сравнение наноразмерного кварца шунгитовых пород с образца-
ми традиционного кварцевого сырья методом комбинационного рассеяния света показало, что его 
отличительной особенностью является присутствие в образцах фазы графеноподобного углерода 
и воды. Практическая значимость. Полученные и исследованные в работе наночастицы кварца 
шунгитов — нового нетрадиционного источника кварцевого сырья, найдут применение в нано-
технологическом материаловедении для оптики, электроники, производства композиционных 
материалов и биомедицины.

Ключевые слова: жильный кварц шунгитовых пород, рентгеноструктурный анализ, спектро-
скопия комбинационного рассеяния, динамическое светорассеяние, сканирующая электронная 
микроскопия
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Abstract
Subject of study. Nanoscale quartz isolated from quartz veins of shungite rocks of Karelia. Aim 

of study. Preparation and study of quartz nanoparticles from shungite rocks, comparison of their 
structural and spectral characteristics with the characteristics of natural quartz from traditional 
deposits to assess the use in optics and biomedicine. Method. The studied samples from the quartz 
veins cutting shungite rocks and the reference samples were prepared in the same way: crushed, 
washed, dispersed and centrifuged. Powders and condensates of quartz nanoparticles were analyzed 
by X-ray diffraction, Raman scattering and scanning electron microscopy. The size of quartz 
nanoparticles in aqueous dispersion was estimated from dynamic light scattering data. Main results. 
According to X-ray diffraction analysis, quartz of shungite rocks is classified as a low-temperature 
-quartz of tetragonal structure (spatial group P41212) and has a crystallite size (less than 100 nm). 
The parameters of the crystal lattice and the coherent scattering region of the vein -quartz of 
shungite rocks were determined after various treatments of the samples under study (dispersion, 
water treatment, ultrasound). Quartz nanoparticles are isolated and stabilized in aqueous dispersion. 
The average size of quartz nanoparticles in aqueous dispersion according to dynamic light scattering 
data is 158.7 ± 89.8 nm. This coincides with the particle size in the dispersion condensate films 
obtained by scanning electron microscopy. Comparison of nanoscale quartz of shungite rocks with 
samples of traditional quartz raw materials by Raman scattering showed that its distinctive feature 
is the presence of graphene-like carbon and water phases in the samples. Practical significance. 
The shungite quartz nanoparticles obtained and studied in the work, are a new unconventional source 
of quartz raw materials. It will find application in nanotechnology materials science for optics, 
electronics, composite materials production and biomedicine.

Keywords: vein quartz of shungite rocks, X-ray diffraction analysis, Raman spectroscopy, dynamic 
light scattering, scanning electron microscopy
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ВВЕДЕНИЕ
Сырьевая база кварца России обширна и вклю-
чает месторождения различных типов кварцев: 
пьезооптического, гранулированного, сливно-
го, горного хрусталя, прозрачного и молочно-
белого жильного кварца. Среди природных ми-
нералов диоксид кремния обладает большим 
числом полиморфных разновидностей. На дан-
ный момент установлено и изучено более 12 ви-
дов SiO2. Низкотемпературный -кварц — 
одна из разновидностей кремнезема, устойчи-
вого при комнатной температуре [1].

В настоящее время диоксид кремния 
(-SiO2) играет центральную роль в техноло-
гиях, включая волоконную оптику для ком-
муникаций, фотомаски, передающую оптику 
для ультрафиолетовых лазеров, тонкие плен-
ки для рефлексивного (высоко передающего) 
покрытия для лазерной оптики [2].

Оптическая промышленность потребляет 
10% мирового кварцевого сырья в виде квар-
цевого стекла (линзы для телескопов и опти-
ческих лабораторных приборов и др.) [3–7]. 
В качестве традиционного сырья для оптиче-
ской промышленности в России используется 
жильный кварц ряда южноуральских и при-
полярноуральских месторождений.

Микросферы синтетического SiO2 исполь-
зуются при создании систем пассивного ра-
диационного охлаждения, где входят в состав 
гибридной пленки 3DPCA/SiO2 из ацетата цел-
люлозы [8]. Такая система имеет высокие зна-
чения среднего солнечного отражения (96%) 
и среднего коэффициента отражения инфра-
красного излучения (95%).

В работе [9] частицы диоксида кремния 
размерами около 40–60 мкм смешивались с 
материалами, используемыми для 3D печати. 
В результате наблюдалось резкое повышение 
показателя преломления и снижение коэффи-
циента поглощения. Данный метод может ис-
пользоваться для увеличения эффективности 
терагерцовых компонентов, изготовленных на 
3D принтере.

Кварц также применяется для создания 
различных мембран. В недавнем исследова-

нии [10] было использовано покрытие NM88B 
(NH2-MIL-88B) на кварцевой пленке, что по-
зволило получить самоочищающуюся мем-
брану. Такая структура имеет низкое энерго-
потребление, высокую прочность и является 
эффективным средством для очистки воды от 
нефтепродуктов.

Наличие пьезоэлектрического эффекта квар-
ца позволяет использовать его для создания 
камертона, который работает как резонанс-
ный акустико-электрический преобразователь. 
С его помощью можно обнаружить слабое фото-
акустическое возбуждение, поэтому он приме-
няется в датчиках, основанных на фотоакусти-
ческой спектроскопии с кварцевым усилением 
[11]. Такие датчики являются эффективным 
средством для мониторинга газов в окружаю-
щей среде, измерения промышленных, город-
ских и сельских выбросов, а также для обнару-
жения важных для медицины молекул [12].

Развитие нанотехнологии значительно по-
высило интерес к кремнеземным материалам 
нанометрового размера в связи с их потен-
циальным применением во многих областях 
для создания материалов с комплексом но-
вых свойств, отличных от свойств объемных 
материалов с тем же химическим составом. 
В последние годы было проведено множество 
исследований аморфного кремнезема, агрега-
та/агломерата наночастиц (НЧ) кремнезема. 
Однако получение НЧ кварца со стабильными 
размерными и структурными параметрами 
является нетривиальной задачей [13, 14].

Новые применения находит наноразмер-
ный кварц и в медицине. В статье [15] НЧ квар-
ца, помещенные на поверхность углеродного 
волокна, усиливают межфазные связи между 
углеродным волокном и молочной кислотой. 
Такой каркас может обеспечить подходящее 
микроокружение для роста и пролиферации 
клеток, что делает наноразмерный кварц пер-
спективным материалом в инженерии кост-
ной ткани. Поэтому исследование наноразмер-
ного кварца, полученного из нетрадиционного 
природного сырья, является важной научной 
и практической задачей.
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Наночастицы кварца, выделенного из шун-
гитовых пород, были опробованы в качестве 
модификатора при наноструктурировании по-
верхности поляризационных пленок йодсодер-
жащего поливинилового спирта. Наночастицы 
осаждались в вакууме лазерным способом на 
поверхность пленок и ориентировались в элек-
трическом поле. В спектральной области длин 
волн 400–750 нм пленки обеспечивают про-
пускание параллельной компоненты света на 
уровне 55–70%, позволяют повысить поверх-
ностную механическую прочность и микро-
твердость, а также получить функциональ-
ные свойства, требуемые для лазерных систем 
коррекции аберраций, дисплейной и биомеди-
цинской техники [16].

Наиболее технологичными и безопасными 
для биомедицины являются дисперсии НЧ 
в воде. Нами получены НЧ кварца в водной 
дисперсии, выбран оптимальный режим, обе-
спечивающий их устойчивость и воспроизво-
димость структурных и физико-химических 
свойств наноразмерного кварца. При этом НЧ 
сохраняют устойчивость без использования 
поверхностно-активных веществ [17]. Эти дис-
персии, полученные методами «зеленой хи-
мии», удовлетворяют требованию стандарти-
зации физико-химических свойств нанома-
териалов для использования в биомедицине. 
Начаты работы по исследованию НЧ квар-
ца в белковых растворах. Установлено, что 
мощность слоя белковой короны составляет 
28–33 нм для НЧ кварца в зависимости от 
концентрации белка [18].

Во всех перечисленных выше областях 
предъявляются повышенные требования к 
структурной однородности, дисперсности и чи-
стоте кварцевого сырья. В настоящее время 
в оптических приборах в основном использу-
ется синтетический кварц, так как большин-
ство природных кристаллов имеет примеси 
и дефекты [19]. В связи с этим актуальны по-
иск новых источников кварцевого сырья, по-
лучение особо чистого кварца из природного 
кварцевого сырья, а также — синтез искус-
ственного кварца.

Основным минералом шунгитовых пород 
является кварц, как было показано метода-
ми рентгенофазового (РФА) и рентгенострук-
турного (РСА) анализа [20–23]. Содержание 
SiO2 во всех текстурах шунгитовых пород 
различных месторождений было установлено 

методом рентгенофлуоресцентного анализа 
(массивная текстура: 44,11–88,37 мас %, про-
жилковая текстура: 37,60–56,50 мас %, брек-
чиевая текстура: 33,86–84,21 мас %) [24].

Несмотря на то, что шунгитовые породы 
считаются нетрадиционным кварцевым сы-
рьем, в Институте геологии Карельского НЦ 
РАН был разработан экологически безопас-
ный, относительно дешевый и простой метод 
получения чистого порошка -кварца с раз-
мерами частиц 50–200 нм в водных диспер-
сиях [17].

Наночастицы кварца при конденсации из 
водной дисперсии образуют пленки. Иссле-
дование физико-химических свойств вновь по-
лученных наноструктурированных объектов 
с использованием спектральных и оптических 
методов приведено в настоящей работе. 

Целью работы, результаты которой изложе-
ны в настоящей статье, являются получение 
и исследование НЧ кварца шунгитовых по-
род, сравнение их структурных и спектраль-
ных характеристик с характеристиками при-
родного кварца традиционных месторожде-
ний для оценки применения в оптике и био-
медицине.

МАТЕРИАЛЫ
Объектом исследования является жильный 
кварц, или кварц второй морфологической 
разновидности, шунгитовых пород Максов-
ского месторождения. Кварц данного место-
рождения образовывался в гидротермальных 
условиях, следовательно, в его структуре мо-
жет находиться связанная вода [25].

Образцы отбирались вручную на месторож-
дении из секущих шунгитовые породы квар-
цевых жил мощностью 10–15 см. Содержание 
SiO2 в исходных образцах составляло 98,82%. 
Исследовались три порошковые пробы квар-
ца, обработанные различными способами.

Отобранные куски кварца измельчались 
в агатовой ступке, а затем в керамическом ис-
тирателе до порошкового состояния — проба 
Qorig. Затем исходный порошок многократ-
но промывался дистиллированной водой 
для удаления растворимых примесей и вы-
сушивался на фильтре — проба Qproc. Из по-
рошка с фильтра при обработке кварца в во-
де была получена дисперсия на ультразвуко-
вом диспергаторе УЗ-22М при частоте 22 кГц. 
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В работе исследовались частицы, выпавшие 
в осадок после центрифугирования и удале-
ния надосадочной жидкости — проба Qsed. 
Наночастицы в надосадочной жидкости ана-
лизировались методом динамического рассея-
ния света (ДРС). Из дисперсии капельным ме-
тодом были получены пленки, которые затем 
конденсировались на стеклянных подложках. 
Форма, размер частиц и агрегатов анализиро-
вались методом сканирующей электронной 
микроскопии (СЭМ).

В качестве объектов сравнения использова-
ны образцы, изученные ранее (жильный кварц 
M-00 и М-121) [24], и образцы хорошо описан-
ного в литературе кварца гидротермально-
го генезиса — горный хрусталь и жильный 
кварц Приполярного Урала [26–28]. Все эти 
образцы подготовлены аналогично исследуе-
мому кварцу шунгитовых пород (измельчение 
в керамическом истирателе, промывка водой, 
перевод в дисперсию, центрифугирование). 
Определить размеры частиц жильного квар-
ца и горного хрусталя методом ДРС без моди-
фицирования поверхности кристаллического 
кварца не представляется возможным, по-
скольку частицы оседают.

МЕТОДЫ
Однородность фазового состава образцов квар-
ца определялась методом РФА. Метод РСА по-
зволил определить кристаллографические па-
раметры (периоды (a, b, c) и объем (V) элемен-
тарной ячейки, размер области когерентного 
рассеяния (ОКР) и индекс кристалличности 
(ИК)). Область когерентного рассеяния рас-
считывалась по формуле Дебая–Шеррера [29]. 
Индекс кристалличности определялся из ин-
тенсивности квинтиплетного пика с индекса-
ми отражения (212) в области углов 2 67, …, 
69 [30].

Рентгенографирование выполнялось на 
автоматическом дифрактометре ARL X’TRA 
(Thermo Fisher Scientific) в интервале углов 
2 = 5–75 с шагом 0,02 на CuK излучении. 
Полученные дифракционные картины обраба-
тывались и анализировались при использова-
нии пакета прикладных программ WinXRD, 
ICDD (DDWiew2008).

Методом спектроскопии комбинационно-
го рассеяния света (КРС) оценивались состав 
и структура образцов. Спектры получены на 

дисперсионном спектрометре Nicolet Almega 
XR (Thermo Scientific), снабженным микро-
скопом Olympus серии BX. Ширина спек-
трального окна 350–3500 см–1, длина волны 
излучения 532 нм. Обработка спектров прово-
дилась с использованием программного ком-
плекса Omnic.

Для оценки размеров полученных частиц 
(средний размер, распределение частиц по 
размерам), а также характеристики устойчи-
вости дисперсных систем (дзета-потенциал и 
индекс полидисперсности PdI) использовался 
метод ДРС, реализованный с помощью анали-
затора частиц Zetasizer Nano ZS DLS (Malvern), 
оснащенного He-Ne лазером с длиной волны 
излучения 633 нм, угол рассеяния 173.

Методом СЭМ изучена микроструктура об-
разцов. Исследование проводилось на сканиру-
ющем электронном микроскопе VEGA 11 LSH 
(Tescan) с энергодисперсионным микроанали-
затором INCA Energy 350.

РЕЗУЛЬТАТЫ
По результатам качественного фазового ана-
лиза показано, что все образцы являются од-
нофазными и представляют собой -кварц.

Для РСА и расчета параметров кристал-
лической решетки в качестве эталона были 
использованы параметры -кварца из между-
народной базы данных ICSD [30]. Результаты 
РСА представлены в табл. 1.

Как видно из таблицы, параметры кри-
сталлической решетки и размеры кристалли-
тов трех образцов после различных обработок 
аналогичны значениям параметров кварцев 
гидротермального генезиса и образцов, иссле-
дованных ранее. Кроме того, эти показатели, 
а также ИК находятся в соответствии с ранее 
опубликованными данными [25, 32]. Индекс 
кристалличности исследуемых образцов по-
сле различных обработок меньше, чем у образ-
цов сравнения (М-00, М-121), это означает, что 
кристаллиты в обработанных образцах более 
разориентированы. Значительное уменьше-
ние ИК наблюдается у частиц кварца после 
водной дисперсии Qsed, которые имеют также 
наименьшее значение ОКР, соответствующее 
среднему размеру кристаллита (табл. 1).

На рис. 1 представлены спектры КРС и оп-
тические изображения исследуемых порошков 
кварцев. Оптические изображения получены 
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с помощью встроенного микроскопа Olympus 
серии BX при одинаковом увеличении. Видно, 
что исследуемые образцы отличаются по фор-
ме и размеру кварцевых зерен.

Согласно полученным спектрам КРС основ-
ным компонентом является кристаллический 
-кварц, о чем свидетельствует пик в диапазо-
не волновых чисел 460–480 см–1. Он хорошо 
выражен у всех образцов, что подтверждают 
результаты РФА. Кроме того, в спектрах так-
же присутствуют пики в области волновых 
чисел 1330 и 1590 см–1, характерные для D- и 
G-пиков углерода (рис. 1).

Однако их наличие наблюдается только 
у кварцев шунгитовых пород. В образцах квар-
ца Приполярного Урала данные полосы отсут-
ствуют.

G-линия в исследуемых образцах сдвину-
та в область больших волновых чисел (более 
1610 см–1), что может быть связно с наличи-
ем в структуре воды. Пик, соответствующий 
валентным ОН-колебаниям в сетке связей 
молекул воды в области 3200 см–1, совмеща-
ется с G-пиком. В исходном природном жиль-
ном кварце М-00 G-полоса также смещена — 
1605 см–1.

Таблица 1. Параметры кристаллической решетки, ОКР и ИК исследуемых образцов

Table 1. Crystal lattice parameters, coherent scattering regions, and crystallinity index of the studied samples

Образцы 
кварца

-кварц
(эталон) Qorig Qproc Qsed

Образцы сравнения

M-00 M-121 Жильный 
кварц

Горный 
хрусталь

a = b, Å 4,9138(9) 4,9136(4) 4,9137(1) 4,9134(9) 4,9137 (2) 4,9135 (1) 4,9136 (7) 4,9140 (1)

c, Å 5,4057(2) 5,4051(8) 5,4049(8) 5,4053(5) 5,4055 (3) 5,4050 (2) 5,4053 (4) 5,4056 (1)

V, Å3 113,04 113,02 113,02 113,01 113,04 113,01 113,02 113,04

ОКР, Å – 76,4 ± 5,0 77,6 ± 5,0 58,3 ± 5,0 63,9 ± 5,0 74,5 ± 5,0 92,1 ± 5,0 83,9 ± 5,0

ИК – 7,3 ± 0,01 7,3 ± 0,01 4,4 ± 0,01 7,9 ± 0,01 7,9 ± 0,01 8,7 ± 0,01 7,3 ± 0,01
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Рис. 1. Спектры КРС порошков кварца и их изображения, увеличение1000. 1 — Qorig, 2 — Qproc, 3 — 
Qsed, 4 — M-00, 5 — горный хрусталь, 6 — жильный кварц (Полярный Ура л). Для сравнения интенсивность  

спектров 1, 2, 3, 5, 6 увеличена в 3 раза 

Fig. 1. Raman spectra of quartz powders and their images 1000 magnification. (1) Qorig, (2) Qproc, (3) Qsed, 
(4) M-00, (5) rock crystal, (6) vein quartz (Polar Urals). For comparison, the intensity of spectra 1, 2, 3, 5, 6, 

is increased by 3 times
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Иногда углерод проявляется в виде второй 
гармоники (2700 см–1). Интенсивность это-
го пика зависит от числа графеновых слоев в 
материале [33]. У всех исследуемых образцов 
данная полоса отсутствует.

Отношение интенсивностей D- и G-пиков 
(ID/IG) позволяет охарактеризовать степень 
упорядоченности углерода. Для углерода квар-
ца исходного образца это соотношение состав-
ляет 0,60, что близко к значению углерода в  по-
роде M-00 — 0,67. Для обработанного водой — 
1,11, и только после дисперсии ID/IG в пробе 
Qsed уменьшается до 0,43, что свидетельству-
ет об упорядоченности углерода кварца.

Ранее было показано [23], что для образ-
цов шунгитового углерода при отношении 
ID/IG > 1 характерно образование трехмерной 
сетки, а при ID/IG < 1 — пленки. При обработ-

ке кварца сохраняется пленочный двумерный 
углерод и увеличивается его упорядоченность 
в пробе Qsed.

Наличие пика на 3290 см–1 означает, что 
в структуре обработанных образцов присут-
ствует вода. Из рис. 1 видно, что данная линия 
отсутствует у образцов Приполярного Урала.

По результатам спектроскопии КРС была 
составлена таблица, содержащая параметры 
спектров КРС исследуемых образцов, образ-
цов сравнения и данные из базовой библиоте-
ки RRUFF Raman Minerals (табл. 2).

Анализ спектров КРС показал, что струк-
тура исследуемого кварца совпадает с квар-
цем, изученным ранее (М-00). Но в структуре 
исследуемых наноразмерных образцов при-
сутствует вода. Эти порошки могут быть легко 
переведены в водную дисперсию, из которой 

Таблица 2. Параметры КРС спектров исследуемых образцов

Table 2. Parameters of the Raman scattering spectra of the studied samples

Образец

Линии кварца Линии углерода Пик воды

Волновые числа
основных пиков,

см–1

Полуширина 
пика,
см–1

Волновое число,
см–1

ID/IG
Около 3200,

см–1
D G

Qorig 367
421
462

50
30
14

1354 1596 0,6 3279

Qproc 363
421
462

64
29
18

1343 1593 1,11 3279

Qsed 360
428
461

47
23
11

1339 1641 0,43 3279

М-00 351
401
466

4
14
12

1354 1596 0,67 3233

Жильный кварц 348
422
462

12
12
11

– – – –

Горный хрусталь 361
436
462

62
56
11

– – – –

Quartz (synthetic) 354
396
464

11
10
11

– – – –

Quartz (Spruce Claim, 
King County, 
Washington, USA)

354
395
463

8
12
11

– – – –
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при осаждении на стеклянную подложку при 
комнатной температуре были получены пленки.

Для пленки Qsed была построена карта спек-
тров КРС (рис. 2). Все приведенные спектры 
качественно похожи, что говорит об однород-
ности полученной пленки. На карте (рис. 2б, г), 
как и на спектре пробы Qsed (рис. 1), присут-
ствуют линии кварца, углерода и воды.

Изменение цвета на рис. 2в свидетельству-
ет о небольшой неоднородности нашей плен-
ки. Но по полученным спектрам (рис. 2г) не 
удалось установить причину ее появления.

Согласно ДРС средний размер частиц в 
суспензии с меньшим содержанием порош-
ка оказался наибольшим (от 116,9 ± 0,7 до
121,3 ± 2,4 нм). При этом они характеризу-
ются наибольшей устойчивостью, о чем сви-
детельствуют значения дзета-потенциала — 
25,4 ± 1,4 мВ. Для сравнения: в суспензиях 
при увеличении содержания порошка размер 
частиц составляет 83,1 ± 1,2 нм, а дзета-потен-
циала — 21,2 ± 1,3 мВ.

Индексы полидисперсности всех суспен-
зий имеют близкие значения (0,16–0,18) ± 0,1. 
Поскольку PdI характеризует однородность 
дисперсии — отклонение от среднего размера 
частиц, то можно заключить, что все диспер-
сии НЧ кварца достаточно однородны.

Все полученные дисперсии имели ней-
тральное значение pH (6,9–7,2), что важно для 
биологически активных сред.

На рис. 3 приведены данные распределения 
количества частиц по размерам надосадочной 
жидкости, полученные методом ДРС.

Максимумы распределения всех ис-
следуемых дисперсий лежат в диапазоне 
158,7 ± 89,8 нм. В отдельных измерениях на-
блюдаются малоинтенсивные пики, соответ-
ствующие частицам размером около 36 нм. 
Это подтверждает рис. 4 при определении 
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Рис. 2. Карта КРС спектров пленки Qsed. Шаг — 
26 мкм. Изображение пленки Qsed, увеличение 
1000 (а), участки картирования спектров 
КРС (б), карта КРС абсолютной интенсивности 
полосы 460 см–1, свидетельствующая об 
однородности состава пленки (в), спектры КРС, 
зарегистрированные на участках картирования 
1–5 (г). Qz — пик кварца, G — пик углерода, 

H2O — пик воды

Fig. 2. Map of Raman spectra for the film of Qsed. 
The step is 26 μm. (а) The image of the film Qsed 
(1000 magnification), (б) the points of removal of 
the Raman spectra, (в) the Raman map of the 
absolute intensity of the band 460 cm–1, indicating 
the uniformity of the composition of the film, 
(г) the Raman spectra in the points of removal 
areas (1–5). Qz is quartz line, G is carbon line, H2O 

is water line

10                            100                          1000                        10000

14

12

10

8

6

4

2

0

Размер, нм

И
н

те
н

си
вн

ос
ть

, 
%

1
2
3

Риc. 3. Распределение относительной интенсивности 
рассеянного света по размерам частиц при 
концентрации НЧ кварца в водной дисперсии 
0,85 (1), 0,72 (2), 0,37 (3) мг/мл (25 C, рН = 6,9). 
Максимумы распределения (нм) — 36,7 ± 5,4, 

158,7 ± 89,8

Fig. 3. Distribution of the relative intensity of 
scattered light by particle size at a  quartz 
nanoparticles concentration in an aqueous dispersion 
of (1) 0.85, (2) 0.72, (3) 0.37 mg/ml (25 C, 
pH = 6.9). Distribution maxima (nm) are 36.7 ± 5.4 

and 158.7 ± 89.8
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относительного объема частиц в дисперсии, 
имеющих соответствующие размеры.

Методом СЭМ получены изображения ча-
стиц, обработанных образцов кварца (рис. 5), 
позволившие охарактеризовать форму и раз-
меры частиц, а также их изменение при обра-
ботке. 

В исходном образце (рис. 5а) кварц пред-
ставлен большими угловатыми зернами с раз-
мерами до 10 мкм. Но есть и скопления не-
больших частиц с диаметром около 60 нм.

После обработки водой (рис. 5б) наблюда-
ются более однородные по размеру частицы, 
образующие агрегаты. Их размеры уменьши-
лись до 2 мкм, преобладают частицы окатан-
ной формы. Размер отдельных частиц состав-
ляет 50 нм. 

Частицы в пленке Qsed (рис. 5в) агрегиру-
ют с образованием цепочек. Появляются боль-
шие агрегаты до 400 нм. Диаметр отдельных 
частиц составляет 2–50 нм.

Рис. 4. Распределение относительного объема 
НЧ по их размерам в водной дисперсии (25 C, 
рН = 6,9). Максимумы распределения (нм) — 

36,7 ± 5,4, 103,0 ± 35,80, 264,0 ± 90,0

Fig. 4. Size distribution of relative volume of 
quartz nanoparticles in aqueous dispersion (25 C, 
pH = 6.9). Distribution maxima (nm) are 36,7 ± 5,4, 

103,0 ± 35,80, 264,0 ± 90,0
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Рис. 5. Электронно-микроскопические снимки частиц кварца в исследуемых образцах Qorig (а), Qproc (б), 
Qsed (в) и в пленках, полученных из водных дисперсий с концентрацией НЧ кварца 0,65 мг/мл (г), 

0,012 мг/мл (д), а также образца кварца Приполярного Урала (е)

Fig. 5. Electron microscopic images of quartz particles in the studied samples (a) Qorig, (б) Qproc, (в) Qsed and 
in films obtained from aqueous dispersions with a concentration of quartz nanoparticles of (г) 0.65 mg/ml, 

(д) 0.012 mg/ml, as well as (е) a sample of quartz from the Circumpolar Urals
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Также были проанализированы 2 пленки, 
полученные из дисперсий с концентрацией 
НЧ кварца 0,65 (рис. 5г) и 0,012 мг/мл (рис. 
5д). Первая из них (рис. 5г) напоминает мем-
брану, образованную частицами правильной 
формы. На поверхности встречаются окру-
глые поры диаметром около 40 нм. На рис. 5д 
видны частицы размером около 30–40 нм, ко-
торые агрегируют в небольшие цепочки.

В образце сравнения (рис. 5е), как и в ис-
ходном образце, кварц представлен больши-
ми угловатыми зернами. Их размер составля-
ет 2–5 мкм. Также есть небольшие частицы 
с диаметром около 500 нм.

ВЫВОДЫ
В настоящей работе кварц шунгитовых пород 
впервые использован для получения устойчи-
вых дисперсий НЧ кварца в воде. Показано, 
что структурные параметры полученных об-
разцов наноразмерного кварца в пределах по-
грешностей сопоставимы с параметрами об-
разцов традиционного кварцевого сырья При-

полярного Урала (горный хрусталь и жильный 
кварц) гидротермального генезиса и эталон-
ных образцов низкотемпературного -кварца.

В образцах -кварца шунгитов обнаружено 
уменьшение ИК и размера кристаллитов при 
выделении НЧ из водной дисперсии. Это может 
свидетельствовать о большей разориентиро-
ванности кристаллитов в кварце шунгитов по 
сравнению с образцами гидротермального ге-
незиса. Кроме того, по данным спектроскопии 
КРС в структуре кварца шунгитовых пород в 
отличие от образцов сравнения присутствуют 
связанная вода и графеноподобный углерод.

Благодаря стабилизирующей роли графе-
ноподобного углерода НЧ кварца устойчивы 
в воде и по данным ДРС имеют средний размер 
158 ± 90 нм. При этом определяются также 
фракции частиц меньшего размера, что согла-
суется с размерами частиц кварца 20–50 нм, 
определенными методом СЭМ в пленках, осаж-
денных из дисперсии.

Наночастицы кварца в водной дисперсии 
представляют интерес в оптике для модифика-
ции поверхности материалов и в биомедицине.
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