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Аннотация
Предмет исследования. Интеграция нитевидных нанокристаллов нитрида индия-галлия 

InGaN c серебряными наночастицами и исследование фотолюминесцентных свойств полученных 

гибридных наноструктур. Цель работы. Улучшение люминесцентных характеристик нитевид-

ных нанокристаллов InGaN с помощью декорирования их поверхности коллоидными наноча-

стицами серебра. Метод. Синтез серебряных наночастиц различных размеров и наночастиц со 

структурой ядро/оболочка серебро/оксид кремния осуществлялся методом коллоидной химии. 

Нитевидные нанокристаллы InGaN получены технологией молекулярно-пучковой эпитаксии. 

Морфология и размеры полученных образцов исследовались методом растровой электронной 

микроскопии. Изучение оптических свойств осуществлялось спектральными методами. Основ-
ные результаты. Продемонстрировано красное смещение длины волны локализованного плаз-

монного резонанса наночастиц при увеличении диаметра и пассивации поверхности наночастиц 

оболочкой оксида кремния. Синтезированы нитевидные нанокристаллы со спонтанно образо-

ванной структурой ядро-оболочка InGaN/GaN, обладающие фотолюминесценцией при комнат-

ной температуре в желто-оранжевой области спектра. Впервые показано, что осаждение колло-

идных наночастиц серебро/оксид кремния на поверхность нитевидных нанокристаллов InGaN 

приводит к возрастанию интенсивности фотолюминесценции исходных структур в 2,2 раза. 
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Практическая значимость. Нитевидные нанокристаллы InGaN являются перспективными твер-
дотельными наноструктурами для создания светоизлучающих устройств видимого спектра, ин-
тегрированных с кремниевой платформой. Создание гибридных наноструктур на основе нитевид-
ных нанокристаллов InGaN и наночастиц серебра является одним из методов повышения эффек-
тивности люминесценции исходных нитевидных нанокристаллов. В частности, предложенная 
в данной работе гибридная наноструктура может быть использована для создания субволновых 
лазеров с оптической накачкой на основе нитевидных нанокристаллов InGaN.

Ключевые слова: нитевидные нанокристаллы, нитрид индия-галлия, наночастицы серебра, 
гибридные наноструктуры, плазмоника, увеличение интенсивности фотолюминесценции
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Abstract
Subject of study.  Integration of indium gallium nitride InGaN nanowires with silver nanoparticles 

and study of the photoluminescent properties of the resulting hybrid nanostructures. Aim of study. 
Improving the luminescent characteristics of InGaN nanowires by decorating their surface with  

colloidal silver nanoparticles. Method. The synthesis of various sizes silver nanoparticles and 

nanoparticles with a silver/silicon oxide core/shell structure was carried out by colloidal chemistry. 
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Indium gallium nitride  nanowires were obtained by molecular beam epitaxy technology. The 

morphology and dimensions of the obtained samples were studied using scanning electron microscopy. 

The optical properties were characterized by spectral methods. Main results. A red shift in the 

wavelength of localized plasmon resonance of nanoparticles was demonstrated with increasing 

diameter and passivation of the nanoparticle surface by a silicon oxide shell. Nanowires with  

a spontaneously formed InGaN/GaN core-shell structure exhibiting photoluminescence at room 

temperature in the yellow-orange region were synthesized. It was shown for the first time that the 

deposition of colloidal silver/silicon oxide nanoparticles onto the surface of InGaN nanowires leads 

to an increase in the PL intensity of the initial structures by a factor of 2,2. Practical significance. 
InGaN nanowires are promising solid-state nanostructures for creating visible light-emitting devices 

integrated with a silicon platform. The creation of hybrid nanostructures based on InGaN nanowires 

and silver nanoparticles is one of the methods for increasing the luminescence efficiency of the 

original nanowires. In particular, the hybrid nanostructure proposed in this work can be used to create 

optically pumped subwavelength lasers based on InGaN nanowires.

Keywords: nanowires, indium gallium nitride, silver nanoparticles, hybrid nanostructures, 

plasmonics, increase in photoluminescence intensity
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ВВЕДЕНИЕ
Совмещение материалов A3B5 с кремниевой 
платформой остается одной из главных задач 
современной полупроводниковой индустрии. 
Однако рассогласование параметров решетки 
большинства материалов A3B5 (GaAs, GaN, 
AlN, AlAs, InN и др.) с параметром решет-
ки кремния, главным образом, не позволяет 
синтезировать эпитаксиальные слои высоко-
го кристаллического совершенства. Поэтому 
в последнее время активно исследуются ните-
видные нанокристаллы (ННК), развитая бо-
ковая поверхность которых и небольшая пло-
щадь их контакта с подложкой обеспечивают 
эффективную релаксацию упругих напряже-
ний без образования структурных дефектов, 
что позволяет сохранять высокое качество ра-
стущих ННК на подложках с отличающими-
ся параметрами решетки [1]. 

Значительный интерес в настоящее время 
представляет синтез ННК нитрида индия-гал-
лия InGaN методом «снизу-вверх». Как было 

показано ранее [2, 3], такой подход позволя-
ет выращивать тройные соединения InGaN  
с высоким содержанием In, что потенциально 
можно использовать для создания светоди-
одов Red Green Blue на основе одной группы 
материалов. Более того, при выращивании 
методом молекулярно-пучковой эпитаксии 
с плазменной активацией азота такие ННК 
могут спонтанно формироваться в структуре 
«ядро-оболочка» InGaN/GaN [2, 3]. 

Известно, что наличие локализованного 
плазмонного резонанса (ЛПР), связанного с на-
ночастицами (НЧ) благородных металлов, и его 
чувствительность к окружающей среде, форме 
и размерам НЧ находит широкое применение  
в сенсорике [4–6] и медицине [7, 8]. В то же вре-
мя локальное усиление электрического поля  
в НЧ на частоте ЛПР обеспечивает увеличение 
оптической накачки и скорости излучательной 
рекомбинации исходной полупроводниковой 
структуры, а плазмон-индуцированная генера-
ция горячих электронов в металлических НЧ 



OPTICHESKII ZHURNAL. 2024. V. 91. № 1. P. 3–136 Research Article

обеспечивает дополнительный транспорт и на-
копление носителей заряда в полупроводнике 
[9–11]. Таким образом, интеграция металли-
ческих НЧ с полупроводниковыми соедине-
ниями позволяет повысить эффективность 
последних. Так, в работе [12] было показано, 
что гибридные наноструктуры (НС) на основе 
ННК Si и золотых НЧ показывают многократ-
ное увеличение фототока и комбинационного 
рассеяния. В работе [13] продемонстрировано 
повышение интенсивности фотолюминесцен-
ции (ФЛ) наностержней GaN/InGaN в синей 
области спектра излучения с помощью НЧ 
Ag [13]. Однако гибридные НС на основе ННК 
InGaN со структурой ядро-оболочка и НЧ Ag, 
методы их синтеза и свойства на сегодняшний 
день остаются практически не изученными и 
представляют большой интерес для многих 
приложений [10].  

Целью настоящей работы является улуч-
шение люминесцентных характеристик ННК 
InGaN с помощью декорирования их поверх-
ности коллоидными НЧ серебра. Для дости-
жения цели были выращены ННК InGaN ме-
тодом молекулярно-пучковой эпитаксии на 
подложках Si(111) и исследованы условия син-
теза крупных НЧ Ag и Ag/SiOx с различной 
длиной волны ЛПР ( LPR). Впервые показано, 
что нанесение НЧ Ag/SiOx на поверхность 
ННК InGaN со структурой ядро-оболочка по-
зволяет увеличить интенсивность ФЛ образ-
цов по отношению к исходным ННК в 2,2 раза. 

МАТЕРИАЛЫ И МЕТОДЫ

Наночастицы Ag и Ag/SiOx 
Синтез исходных серебряных НЧ малого ди-
аметра проводился в водной среде с использо-
ванием аскорбиновой кислоты (Ленреактив, 
C6H8O6, чистота 98%), цитрата натрия (Sigma-

Aldrich, Na3C6H5O7, чистота 99%), нитрата се-
ребра (Ленреактив, AgNO3, чистота 99%) в ка-
честве веществ-восстановителей, стабилизато-
ров и источников серебра методом, описанным 
в публикациях [14, 15]. Полученные таким об-
разом НЧ со средним диаметром около 30 нм  
использовались в качестве зародышей для син- 
теза более крупных НЧ Ag. Для этого в вод- 
ную среду с температурой 80 С при активном 
перемешивании инжектировалось 10 мл исход-
ного раствора НЧ. Далее в полученную смесь 
добавлялся водный раствор источника сереб- 
ра (1,25 мл раствора цитрата натрия (27 мМ) и  
0,25 мл раствора нитрата серебра (60 мМ)). 
Синтез проводился в течение 30 мин. Сформи-
рованные НЧ использовались для получения 
других более крупных НЧ. Данная операция 
повторялась 3 раза. Нанесение оболочки ок-
сида кремния SiOx проводилось модифициро-
ванным методом Штобера [15, 16]: к 2 мл водно-
го раствора НЧ серебра без оболочки (ядро) при 
активном перемешивании добавлялось 8 мл 
этанола и 5,4 мкл тетраэтоксисилана (Ленре-
актив, SiC8H20O4, чистота 99%). Через 5 мин  
к этой смеси добавлялось 0,25 мл 10%-го водно-
го раствора аммиака (Невареактив, NH4OH, 
чистота 25%). Время синтеза оболочки оксида 
кремния составило 1 час при комнатной тем-
пературе. Во всех экспериментах по синтезу 
НЧ полученные золи подвергали центрифуги-
рованию на установках Microspin 12 (Biosan) и 
Eppendorf 5804 R (Eppendorf) для удаления по-
бочных продуктов реакций. Определение LPR 
полученных НЧ осуществлялось с помощью 
спектрофотометра Thermo Scientific multiskan 
GO (Thermo Fisher Scientific), работающего  
в ультрафиолетовом и видимом диапазонах.

На рис. 1 представлена принципиальная 
схема синтеза крупных НЧ серебра и НЧ ядро-
оболочка Ag/SiOx на основе исходных ма- 
лых НЧ.

Рис. 1. Схема синтеза крупных НЧ Ag и Ag/SiOx

Fig. 1. Scheme for the synthesis of large Ag and Ag/SiOx nanoparicles

Ag+ Ag+Ag+ +SiOx

оболочка
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Нитевидные  
нанокристаллы InGaN 

Нитевидные нанокристаллы InGaN были вы-
ращены на подложке Si(111) p-типа с исполь-
зованием установки молекулярно-пучковой 
эпитаксии Riber Compact 12, оснащенной 
эффузионными ячейками In, Ga и источни- 
ком азотной плазмы. Перед загрузкой в ро-
стовую камеру подложки обрабатывались  
в растворе плавиковой кислоты и деионизи-
рованной воды в соотношении 1:3 (по объе-
му)  для удаления оксида кремния с поверх-
ности. Затем подложки загружались в ро-
стовую камеру, нагревались до 900 С и 
отжигались в течение 20 мин. После этого 
температуру подложек  снижали до 655 С.  
С помощью in-situ дифракции быстрых элек-
тронов на отражение наблюдалась атомар-
но-чистая ростовая поверхность Si с реконст- 
рукцией (7 7). 

После стабилизации температуры подлож-
ки активировался источник азотной плаз-
мы и одновременно открывались заслонки ис-
точников Ga и In. Поток азота и мощность ис-
точника азотной плазмы устанавливались на 
уровне 0,33 см3/мин и 450 Вт соответственно. 
Эквивалентные давления потоков In и Ga, из-
меренные вакуумметром Байярда–Альперта 
у ростовой поверхности, были равны между 
собой и составляли 1 10–7 Торр. Синтез ННК 
проводился в азот-обогащенных условиях, 
что подтверждалось наблюдением трехмерной 
картины дифракции быстрых электронов на 
отражение во время всего ростового процесса. 
Время синтеза составило 21 час.

Одиночные  
нитевидные нанокристаллы  
и гибридные наноструктуры

Для отделения массива ННК InGaN от Si ис-
ходный образец обрабатывался в водном рас-
творе плавиковой кислоты (3:1 по объему)  
в течение 30 мин. Далее массив переносился 
в изопропиловый спирт (Невареактив, C3H8O, 
чистота 99%) с последующей обработкой в 
ультразвуковой ванне. Полученная суспензия 
с одиночными ННК покапельно наносилась 
на стеклянную подложку, покрытую тонким 
слоем оксида индия-олова (100 нм) с золотыми 
метками. Для создания гибридных НС на дан-
ную подложку с ННК наносился коллоидный 
раствор НЧ Ag/SiOx объемом 15 мкл. 

Спектры микро-фотолюминесценции 
одиночных нитевидных нанокристаллов  
и гибридных наноструктур

Карты и спектры ФЛ получены с использо-
ванием конфокального микроскопа Integra 
Spectra (NT-MDT) при комнатной температуре. 
Для возбуждения использовался YLF:Nd-лазер, 
работающий в непрерывном режиме (дли-
на волны 527 нм). Луч возбуждающего лазе-
ра фокусировался с помощью 100  объектива 
(Mitutoyo, M Plan APO NIR) с числовой апер-
турой 0,5. Тот же объектив использовался 
для сбора сигнала ФЛ. Излучение направля-
лось зеркалами на входные щели монохрома-
тора (Sol Instruments MS5204i), детектирова-
ние осуществлялось с помощью охлаждаемой 
кремниевой матрицы ПЗС (iVac). 

Морфология и размеры наноструктур
Для исследования размеров и формы синтези-
рованных образцов использовалась установка 
растровой электронной микроскопии (РЭМ) 
Supra 25 Carl Zeiss AG.

Моделирование 
Расчет карты распределения электрического 
поля вблизи НЧ Ag/SiOx проводился с помо-
щью специализированного программного па-
кета COMSOL Multiphysics 5.5. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Структурные свойства синтезированных 
нитевидных нанокристаллов InGaN

Исходный образец представляет собой мас-
сив ННК со средней высотой 2,7 мкм и диаме-
тром около 50 нм у основания и около 100 нм  
у вершин (рис. 2а). В средней части ННК сра-
стаются. Как было показано ранее [2, 17],  
в сросшейся части ННК содержание In отно-
сительно Ga составляет от 10 до 20%; в про-
странственно-разделенных ННК, сформиро-
ванных выше сросшейся части, спонтанно 
формируется структура ядро-оболочка. Со-
держание In внутри ядер составляет 30–40%, 
в оболочках — около 4%.

Оптические свойства и морфология 
коллоидных наночастиц Ag и Ag/SiOx

Результаты синтеза НЧ Ag/SiOx на основе 
крупных НЧ Ag  продемонстрированы на рис. 3.  
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На первом этапе синтеза НЧ Ag имеют сфе-
рическую форму со средним диаметром 30 нм 
(рис. 3а), после проведения трех итераций до-
бавления водного раствора источника ионов 
серебра образуются крупные НЧ со средним 
размером 70 нм (рис. 3б). На рис. 3в представ-
лено РЭМ-изображение НЧ после примене-
ния модифицированного метода Штобера для 
формирования оболочки SiOx на поверхности 
крупных НЧ Ag: средний диаметр увеличи-
вается на 10–20 нм и наблюдается заметный 
контраст РЭМ-изображения НЧ, что свиде-
тельствует об образовании структуры ядро-
оболочка.

На рис. 4 представлены спектры оптиче-
ской плотности коллоидных растворов НЧ на 
всех этапах синтеза.

Исходные сферические НЧ серебра малого 
диаметра (спектр 1 на рис. 4) обладают ЛПР 
на длине волны 404 нм с полушириной пика 
50 нм, что свидетельствует о малой дисперсии 
НЧ по размерам [18]. После синтеза крупных 
НЧ Ag (спектр 4 на рис. 4), ЛПР смещается  
в длинноволновую область с LPR = 450 нм и 
сопровождается значительным уширением 
резонанса до 145 нм. Энергия ЛПР в НЧ при 
его возбуждении внешним электромагнитным  
полем описывается силой электростатического 

(а) (в)(б)

100 нм 100 нм 100 нм

Рис. 3. Результаты синтеза крупных НЧ Ag и Ag/SiOx. Исходные НЧ Ag (а), НЧ Ag после трех итераций 
синтеза (б), НЧ Ag/SiOx на основе крупных Ag НЧ (в)

Fig. 3. Results of the synthesis of large nanoparticles Ag and Ag/SiOx nanoparicles. (a) Initial Ag nanoparicles, 
(б) Ag nanoparicles after three iterations of synthesis, (в) Ag/SiOx nanoparicles based on large Ag nanoparicles 

(а) (б)

1 мкм 100 нм

Рис. 2. Характерное РЭМ-изображение ННК InGaN на Si — вид сбоку (а) и вид сверху (б)

Fig. 2. Typical scanning electron microscopy image of an InGaN nanowires on Si (a) cross-section and  
(б) plan view 
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взаимодействия зарядов, локализованных на 
противоположных концах НЧ [18]. При уве-
личении диаметра НЧ степень этого взаимо-
действия уменьшается, что приводит к сдви-
гу плазмонного резонанса в длинноволновую 
область. Формирование оболочки SiOx на по-
верхности крупных НЧ также приводит к уве-
личению LPR до значения 468 нм (спектр 5  
на рис. 4). Данное явление объясняется силь-
ной зависимостью LPR от диэлектрического 
окружения металлической НЧ, которое опи-
сывается эффектами поляризации окружаю-
щей среды под действием собственного элек-
трического поля НЧ при возбуждении ЛПР 
[18]. Поскольку НЧ Ag/SiOx обладают значи-
тельной полушириной резонанса и наиболь-
шей близостью LPR к длине волны изучения 
лазера, возбуждающего ФЛ в ННК, именно 
эти частицы были использованы для исследо-
вания их влияния на люминесцентные свой-
ства ННК InGaN.

Оптические свойства  
и морфология гибридных наноструктур  
на основе наночастиц Ag/SiOx  
и нитевидных нанокристаллов InGaN

Представленное на рис. 5 РЭМ-изображение 
демонстрирует наличие НЧ Ag/SiOx вблизи 
поверхности ННК. Наночастицы распределе-
ны неоднородно и преимущественно располо-
жены вдоль боковых границ ННК.

При измерениях карты микро-ФЛ исследу-
емых образцов ННК с нанесенными НЧ были 
выбраны точки с максимальной  амплитудой 
ФЛ, спектры ФЛ в этих точках представле-
ны на рис. 6. Видно, что ННК сами по себе  
и гибридная НС излучали в желто-оранжевой 
области спектра с длиной волны максимума 
ФЛ около 573 нм. После нанесения НЧ на ННК 
не наблюдалось значительного изменения по-
луширины исходного спектра, но амплитуда 
и интегральная интенсивность ФЛ увеличи-
лись в 2,2 раза. Асимметричная и уширенная 
форма спектра предположительно связана с 
двумя фактами: с измерением микро-ФЛ сра-
зу от нескольких ННК, как видно на рис. 5, 
и с неравномерным распределением In в ННК 
InGaN, что будет исследовано в дальнейшем.

Моделирование усиления  
электрического поля вблизи  
наночастиц Ag/SiOx

Полученные экспериментальные результаты 
по увеличению амплитуды ФЛ ННК с помо-
щью НЧ Ag/SiOx могут быть связаны с увели-
чением плотности мощности электрического 
поля вблизи НЧ. На рис. 7 представлена карта 
распределения напряженности электрическо-
го поля вблизи НЧ Ag/SiOx. Внешнее электри-
ческое поле (электрическое поле излучения 
лазера, возбуждающего ФЛ), действующее  

Рис. 5. РЭМ-изображение ННК после нанесения 
НЧ Ag/SiOx 

Fig. 5. Scanning electron microscopy image of  
a nanowires after Ag/SiOx nanoparticles deposition 
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Рис. 4. Спектры оптической плотности коллоидных 
растворов с НЧ Ag и НЧ Ag/SiOx. Исходные НЧ 
Ag малого диаметра (1), НЧ Ag после первой 
итерации увеличения диаметра (2), НЧ Ag после 
второй итерации (3), НЧ Ag после третьей 
итерации (4), крупные НЧ Ag после нанесения 

оболочки SiOx (5)

Fig. 4. Optical density spectra of colloidal solutions 
with Ag nanoparticles and Ag/SiOx nanoparticles.  
(1) Initial Ag nanoparticles of small diameter, (2) Ag 
nanoparticles after the first iteration of increasing 
the diameter, (3) Ag nanoparticles after the second 
iteration, (4) Ag nanoparticles after the third 
iteration, (5) large Ag nanoparticles after deposition 

of the SiOx shell
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на НЧ, представляет собой y-поляризованную 
монохроматическую волну ( = 527 нм), рас-
пространяющуюся в z-направлении. 

Модельные представления о НЧ Ag/SiOx
задаются следующим образом: серебряное 

Рис. 7. Распределение напряженности электрического поля вблизи НЧ Ag/SiOx. E0 — напряженность 
внешнего электрического поля, Е — напряженность рассеянного электрического поля вблизи НЧ

Fig. 7. Electric field strength distribution near Ag/SiOx nanoparticle. E0 is external electric field strength, 
E is scattered electric field strength near nanoparticle

ядро радиусом 35 нм и оболочка SiOx толщи-
ной 15 нм. Значения диэлектрических прони-
цаемостей и показателей преломления Ag и 
SiOx представлены в работах [19, 20] соответ-
ственно.

Рис. 6. Спектры интенсивности ФЛ. 1 — ННК InGaN, 2 — гибридная НС ННК-НЧ. На вставке 
продемонстрирована карта микро-ФЛ гибридной НС

Fig. 6. Photoluminescence intensity spectra. (1) InGaN nanowires, (2) hybrid nanowire-nanoparticle. The inset 
shows the micro-photoluminescence map of the hybrid nanostructure
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Для представленной модели наблюдается 
увеличение электрического поля вблизи НЧ  
в 3,7 раза (рис. 7). Известно, что интенсив-
ность электромагнитного излучения пропор-
циональна квадрату напряженности элек-
трического поля E0 [21]. Таким образом, ис-
пользование НЧ Ag/SiOx позволяет локально  
увеличить интенсивность падающего элек-
тромагнитного излучения, возбуждающего 
ФЛ в ННК, в 1–14 раз. Однако, как видно из 
рис. 7, наибольшее увеличение напряжен-
ности электрического поля наблюдается на 
полюсах НЧ. Поэтому для достижения мак-
симальной амплитуды ФЛ ННК необходи-
мо контролировать не только форму и раз-
мер НЧ, но и их расположение на поверхно- 
сти ННК.

ВЫВОДЫ
Продемонстрирована возможность получения 
методом коллоидной химии стабильных НЧ 
серебра c LPR от 405 до 468 нм за счет изме-
нения их размера и диэлектрического окру-
жения. С использованием технологии моле-
кулярно-пучковой эпитаксии синтезированы 
ННК InGaN на Si, демонстрирующие ФЛ при 
комнатной температуре в видимой области 
спектра. Декорирование поверхности ННК In-
GaN НЧ Ag/SiOx позволило увеличить ампли-
туду ФЛ исходных структур в 2,2 раза. Полу-
ченные результаты свидетельствуют о том, что 
развитие методов контролируемого нанесения 
НЧ Ag и дальнейшая модификация плазмон-
ных свойств может значительно улучшить лю-
минесцентные свойства ННК InGaN.
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