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Введение

Исследование состояния земной биосферы 
является важным источником информации 
для решения не только текущих социально-
экономических задач, но и проблем устойчивого 
развития цивилизации в целом [1]. Эффектив-
ность прогноза климатических и экологических 
изменений достигается при реализации доста-
точно полного мониторинга с учетом всех есте-
ственных и антропогенных факторов, влияющих 
на окружающую среду. Учет источников загряз-
нения атмосферного воздуха и инвентаризация 
выбросов осуществляются во многих странах 
мира, в том числе и в России.

На территории России, как известно, насчи-
тывается около 100 000 опасных производств и 
объектов, из которых особую опасность пред-
ставляют 1500 ядерных и 3000 химических и 
биологических объектов. В нефтяной и газовой 
промышленности стран СНГ эксплуатируются 
более 200 000 км магистральных газопроводов, 
65 000 км магистральных нефтепроводов, более 
6000  км продуктопроводов и более 300  000  км 
промысловых трубопроводов различного на
значения. При этом 2/3 магистральных трубо-
проводов имеют возраст более 25 лет. На тру-
бопроводном транспорте нефти и газа ежегодно 
происходит более 100 крупных аварий [2].

Недостатком работы практически всех пред-
приятий, связанных в своей деятельности с 
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загрязнением окружающей среды, является от-
сутствие современных диагностических средств, 
технологий и специалистов. В России разрабо- 
тано множество средств диагностики природной 
среды не только для целей эколого-метеоро
логического мониторинга, но и для задач ис-
следовательского, технического, бытового и 
специального назначения. Однако с учетом 
огромного числа факторов, действующих на из-
мерительную аппаратуру в реальных условиях, 
а также требований соответствующих норматив- 
но-технических документов большинство хо- 
рошо зарекомендовавших себя в лабораторных 
условиях приборов оказываются непригодными 
для эксплуатации в реальных условиях. Для мно-
гих направлений экологического диагностиро-
вания повышение точности и чувствительности 
измерений параметров антропогенных загрязне- 
ний остается наиболее проблемным. 

Лидарные исследования позволяют оцени-
вать выделение веществ техногенного и при-
родного происхождения, их распространение и 
поглощение во всей земной биосфере, проводить 
оперативное дистанционное определение локаль-
ных концентраций вредных и взрывоопасных 
конденсированных и газообразных примесей 
в атмосфере, на поверхности земли и воды, в 
том числе обнаружение утечек из нефте- и га-
зопроводов. Лазерное зондирование – наиболее 
современный метод исследования параметров 
составляющих земной биосферы, которые дис-



42 “Оптический журнал”, 76, 4, 2009 

танционно в принципе не могут быть измерены 
другими методами. К преимуществам лидарного 
метода по сравнению с традиционными, напри-
мер физико-химическими, относятся дистанци-
онность, бесконтакность, возможность непре
рывного площадного и профильного сканирова-
ния с одновременным определением широкого 
набора химических элементов и соединений, а 
также высокая скорость детектирования. Важно 
также, что лидарные комплексы осуществляют 
оперативное зондирование биосферы без дест
руктивных воздействий на нее. 

Развитие лидарной техники началось в 1970-х 
годах [3], а широкий размах получило в 1990-х 
годах благодаря удешевлению комплектующих 
изделий и элементной базы, с одной стороны, 
и прогрессу в лазерной технике, средствах вы-
числительной техники и программного обеспе-
чения, с другой. Несмотря на то что лидарные 
средства измерения считаются достаточно новой 
технологией, они уверенно занимают прочные 
позиции на мировом рынке. И сегодня можно 
констатировать их массовое распространение не 
только в промышленно развитых, но и во многих 
развивающихся странах. 

Большое количество организаций и фирм 
за рубежом занимаются разработкой подобной 
аппаратуры, обработкой и интерпретацией по-
лученной информации. Развитие лидаров стоит 
в общем ряду разработок авиационных лазерных 
информационных комплексов – одного из прио-
ритетных направлений в многолетней деятель-
ности Института лазерной физики (ИЛФ) НПК 
“ГОИ им. С.И. Вавилова”.

Известно множество примеров разработки оте
чественными предприятиями образцов лидаров 

на основе твердотельных, полупроводниковых, 
газовых (He–Ne-, азотных, эксимерных, СО2-, 
HF-, DF-, Сu-) лазеров [4–6]. Развитие этой аппа-
ратуры идет в направлении определения наибо- 
лее перспективных способов получения спек-
тральной информации, повышения чувствитель-
ности, пространственного и спектрального раз-
решения, увеличения точности привязки шкалы 
длин волн при сокращении габаритов и веса, 
внедрения унифицированных узлов аппаратуры 
и т. д. По селективной способности определения 
спектров современные спектрометры делятся 
на многоспектральные (λ/∆λ ≥ 10), гиперспект
ральные (λ/∆λ ≥  100) и ультраспектральные 
(λ/∆λ ≥  1000). При исследовании в атмосфере 
газовых составляющих с низкой концентрацией 
необходимо использовать ультраспектральные 
лидары, обеспечивающие спектральное раз-
решение λ/dλ ≥  1000 в широком спектральном 
диапазоне. 

До последнего времени разработки лидарных 
систем, обладающих экстремально высоким спек-
тральным разрешением, практически отсутство-
вали. В созданном в ИЛФ ГОИ им. С.И. Вавилова 
прототипе авиационного лидара, по-видимому, 
впервые реализована и продемонстрирована уль-
траспектральная селективность.

Лидарный метод спонтанного 
комбинационного рассеяния

Для измерений содержания газообразных 
примесей и конденсированных веществ в окру-
жающей среде в основном используются метод 
дифференциального поглощения (ДП) и метод 
спонтанного комбинационного рассеяния (СКР), 

Л
аз

ер

0 1000 2000 3000 4000
Волновое число, см–1

Рис. 1. Стоксовы сдвиги (νкв) КР различных молекул при возбуждении лазерным излучением.
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или рамановский. Лидары, построенные на 
методе ДП, работают в ИК диапазоне (в окнах 
прозрачности атмосферы), а метод СКР наиболее 
чувствителен в УФ области.

Комбинационное рассеяние излучения газа-
ми, жидкостями и твердыми телами является 
прямым источником информации о химическом 
составе различных сред (рис. 1) [7]. Этот метод 
нашел широкое применение не только при опе-
ративном контроле состояния приземной атмо
сферы, экологической безопасности среды, но и 
для проведения широкого круга исследований 
в интересах физики и химии атмосферы, гео-
физики и геологии, других сфер антропогенной 
деятельности. В частности, рамановская спект
роскопия широко используется при исследо- 
ваниях, реставрации, восстановлении и кон-
сервации произведений искусства и объектов 
культурного наследия [8, 9]. При проведении 
спектрального анализа рассеянного на части-
цах излучения с волновым числом n0  =  1/λ0 
(λ0 – длина волны) наблюдаются серии боковых 
частот, сдвинутые на величины, равные частотам 
колебательно-вращательных переходов облучае-
мых молекул nкв.

В сравнении с ДП метод СКР обладает следую-
щими достоинствами:

– возможность при зондировании одним ла-
зером одновременно регистрировать широкий 
набор и непосредственно измерять абсолютные 
значения концентраций химических веществ – 

газовых компонентов, жидкостей и аэрозолей – 
без изменения состава и режима аппаратуры. Ме-
тод ДП для идентификации каждого из веществ 
в сложных смесях требует набора лазеров или 
лазера с перестройкой в спектральном диапазоне 
2,5–15 мкм, работающего одновременно на двух 
близкорасположенных длинах волн; кроме того, 
широкие полосы поглощения атмосферными 
парами воды и углекислым газом не позволяют 
обнаруживать компоненты, имеющие собствен-
ные полосы поглощения в этих же спектральных 
интервалах. Метод ДП пригоден для регистра- 
ции лишь тех веществ, линии поглощения кото-
рых совпадают с длиной волны зондирующего 
лазера. Отсутствие переналожения спектров 
СКР в широком диапазоне длин волн откры- 
вает возможности селекции исследуемых ан-
тропогенных выбросов на фоне системы Земля-
атмосфера при наблюдении с борта летательных 
аппаратов; 

–  чрезвычайно высокая чувствительность к 
спектральным отличительным признакам раз-
личных покрытий и материалов, поэтому метод 
СКР особенно эффективен при обнаружении 
малоконтрастных объектов. Эффективность ме-
тода может быть усилена за счет дополнительной 
селекции целей по отрицательному контрасту 
“объект–фон”;

–  возможность использования метода СКР 
как в ночных, так и дневных условиях из-за от-
сутствия солнечных помех при использовании 

Примеры зарубежных рамановских лидаров
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ультрафиолетовой “солнечно-слепой” области 
спектра (λ  ≤  300  нм). На чувствительность 
оптико-электронных систем, применяемых в 
методе ДП, влияет не только рассеянное днем 
солнечное излучение, но и тепловой фон Земли, 
особенно в летних условиях;

– возможность непосредственно измерять аб-
солютную концентрацию газовых составляющих 
атмосферы, так как в качестве репера служит 
концентрация азота;

– более высокая надежность и менее жесткие 
условия эксплуатации, в частности, в СКР-
лидарах не требуются лазеры с точной настрой-
кой и стабилизацией длины волны, охлаждае- 
мые фотоприемные устройства;

– легкая перестраиваемость схемы для реги-
страции флуоресценции обнаруживаемых ве-
ществ без изменения структурных элементов.

Лидарный метод комбинационного рассеяния 
широко используется за рубежом. В последние 
десятилетия разработаны рамановские лидары 
различного назначения. Чаще они работают в 
спектральном диапазоне более 350 нм в верхнюю 
полусферу и размещаются стационарно на земле 
для обнаружения в атмосфере, в частности, паров 
воды и метана до высот порядка 10 км (в ночных 
условиях) [10, 11], на автомобилях для экологи-
ческих исследований промышленных выбросов 
[12] и на самолетах для измерения концентрации 
озона, паров воды и пр. [13–15].

В таблице, составленной по материалам J. of 
Geophysic Research 2003.V. 108. № .D23, приве-
дены примеры зарубежных авиационных рама-
новских лидаров, откуда следует, что все лида- 
ры, как правило, регистрируют лишь единицы 
атмосферных компонентов и примесей. В каче-
стве источников зондирования в них применя-
ются твердотельные лазеры с ламповой накачкой 
или эксимерные лазеры, обладающие неболь- 
шим ресурсом работы (не более 108 импульсов) и 
солидными массогабаритными характеристика-
ми (масса 150–200 кг, объем до 1 м3). 

Метод формирования 
ультраспектрального разрешения 

в рамановском лидаре

Хотя молекулярные колебания имеют шири-
ну спектральной линии не более 1 см–1, спектры 
рамановского рассеяния различных молекул, 
особенно в коротковолновой области, могут рас-
полагаться близко друг к другу. Например, у 
азота и метана значения волновых чисел коле
бательных переходов отличаются мало. Поэтому 

использование рамановского метода для селек-
ции широкого набора атмосферных примесей 
требует ультравысокого спектрального разреше-
ния, что позволяет исключить перекрытие спек-
тральных линий СКР при существенной разнице 
концентраций соответствующих молекул.

Современные рамановские лидары могут 
быть построены с весьма малыми габаритами 
и массой. Это вполне обеспечивается примене
нием компактных твердотельных лазеров с 
диодной накачкой и облегченной оптикой. Улуч- 
шение инструментальной точности и массо-
габаритных характеристик в оптико-электрон- 
ных комплексах, как известно, связано с умень-
шением длины волны излучения. Применение 
УФ средств подсветки и приема в лидарах по-
зволяет качественно увеличить чувствитель- 
ность и точность обнаружения химических ве-
ществ и физических объектов. Традиционные 
средства повышения чувствительности и селек-
тивности приемных систем, как правило, связа-
ны с увеличением светосилы входной оптики и с 
уменьшением спектральной ширины сигналов. 
В лидарных комплексах подобный путь часто 
сопровождается необходимостью увеличения 
мощности зондирующего излучения, что не га-
рантирует безопасность воздействия на органы 
зрения людей, попавших в область его распро-
странения. Поэтому реализация перечисленных 
требований к точности измерений предполагает 
разработку методов и устройств, способствую-
щих значительному снижению уровня фоновых 
засветок, увеличению помехозащищенности и 
отношения сигнал/шум.

Зондирующее излучение лидаров может 
представлять угрозу для здоровья людей из-за 
возможного поражения органов зрения и ожогов 
кожи. Причем на практике наибольшее внима-
ние уделяется только угрозе зрению случайных 
наземных наблюдателей (рис. 2), тогда как ожоги 
кожи возможны лишь на очень близких рас-
стояниях (единицы метров), т. е. в лабораторных 
условиях, где с аппаратурой работает специаль-
но обученный персонал при соблюдении норм 
безопасности.

Лидары с длиной волны источника зондиро-
вания порядка 1,0  мкм оказываются самыми 
опасными (наивысший, IV класс опасности по 
международной классификации), а в диапазоне 
спектра около 0,26 и 1,5  мкм оказываются са-
мыми безопасными (низший, I класс опасности). 
Такое принципиальное различие объясняется 
тем, что стекловидное тело глаза в значительной 
степени прозрачно на λ ≈ 1,0 мкм и почти полно-



45“Оптический журнал”, 76, 4, 2009 

стью непрозрачно на λ ≈ 0,26 и 1,5 мкм. Поэтому 
УФ лазерное излучение не может достигнуть 
сетчатки и вызвать ожог, так как оно будет пол-
ностью поглощено стекловидным телом глаза. 
Напротив, лазерное излучение с λ ≈ 1,0 мкм будет 
сфокусировано хрусталиком и без серьезного 
ослабления достигнет сетчатки, что при превы-
шении порогового значения плотности мощности 
может привести к ожогу сетчатки.

Однако не следует считать, что лидары с 
рабочей λ ≈ 1,5 мкм предпочтительны из-за их 
почти полной безопасности. Поскольку стекло-
видное тело глаза в основном состоит из воды, 
оно оказывается почти непрозрачным – вода 
интенсивно поглощает излучение на λ ≈ 1,5 мкм. 
Кроме того, лидары с такой длиной волны чрез-
вычайно чувствительны к содержанию водяного 
пара в атмосфере и могут “слепнуть” уже при 
незначительном снижении метеорологической 
дальности видимости. По этой же причине ла-
зерные импульсы с λ ≈ 1,5 мкм не отражаются 
от водных и увлажненных поверхностей, а также 
от объектов, на поверхности которых по каким-
либо причинам имеется слой влаги (например, 
роса). С этих позиций зондирование УФ лазер-
ными импульсами является более предпочти-
тельным. 

Наиболее мощными источниками УФ ко-
герентного излучения традиционно являлись 
электроразрядные эксимерные лазеры на гало-
генидах инертных газов. До 1990-х годов на их 

основе строилось большинство авиационных 
лидаров [17–19]. Но затем благодаря прогрессу в 
развитии электронной компонентной базы, ком-
пьютерной техники и программного обеспечения 
приоритеты в лазерном зондировании смести- 
лись в направлении использования малогаба-
ритных твердотельных лазерных источников 
зондирования, более эффективных средств де-
тектирования и обработки информации. Одно из 
требований к лазеру для СКР-лидара – он должен 
быть импульсным для обеспечения простран-
ственного разрешения. При этом желательно, 
чтобы длительность импульса не превышала 
10  нс, так как локальные скопления обнару
живаемых веществ могут иметь характерные 
размеры порядка 1  м. Второе  – высокий темп 
следования импульсов при минимально воз-
можных габаритах и энергопотреблении. И, на-
конец, длину волны зондирующего излучения 
целесообразно выбирать в УФ области спектра, 
где сечения СКР максимальны. 

Дифференциальные сечения рамановского 
рассеяния колебательных переходов молекул 
увеличиваются с уменьшением длины волны. 
Поэтому в УФ области спектра метод СКР имеет 
наибольшие чувствительность и быстродействие. 
При λ < 250 нм заметно сказывается экстинкция 
атмосферы, а в области λ > 320 нм резко увели-
чивается уровень фоновых засветок, особенно в 
дневное время. В УФ области спектра основными 
поглощающими компонентами в атмосфере яв-
ляются молекулы озона О3 и кислорода О2. Но 
озон в тропосфере имеет чрезвычайно низкую 
концентрацию, а кислород поглощает в диапазо-
не 180–220 нм. Поэтому для работы в приземном 
слое атмосферы наиболее приемлем диапазон 
λ = 250–320 нм.

В этом “солнечно-слепом” диапазоне суще-
ственно повышается чувствительность лидара 
из-за предрезонансного усиления сигнала СКР 
[20, 21], в частности, для основных загрязните-
лей атмосферы (SO2, NO2, NO, H2S, NH3 и арома-
тических углеводородов), полосы поглощения 
которых лежат в данной области спектра. 

Входные телеобъективы в лидарах чаще всего 
строятся на основе отражательной оптики, по-
скольку зеркала могут иметь большие размеры 
при отсутствии хроматизма. Наибольшее распро-
странение получили схемы Ньютона и Кассегре-
на, в фокусе которых устанавливается полевая 
диафрагма, щель полихроматора (спектрографа) 
или световолокно. Значительно реже использу-
ются линзовые входные объективы прежде всего 
из-за хроматических аберраций и габаритных 
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Рис.  2. Диаграмма безопасных уровней об-
лучения глаз Pmax лазерными импульсами 
[16]. Диаметр пучка 10  мм, длительность 
импульса 6 нс, частота 10 Гц.
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ограничений. Очевидно, что схема Кассегрена 
при одинаковых фокусных расстояниях ком-
пактнее, хотя в ней имеет место экранирование 
вторичным зеркалом. 

Для ультрафиолетовых приборов вообще, 
а для измеряющих слабые сигналы лидаров в 
особенности, необходима эффективная борьба 
с фоновыми засветками в самом приборе при 
одновременном подавлении рэлеевского рассея-
ния лазерного излучения на молекулах воздуха. 
Наиболее радикальным средством борьбы с рас-
сеянным светом является применение двойных 
и даже тройных монохроматоров. Среди много-
образия спектрографов с вогнутой решеткой наи-
более широкое распространение получило лишь 
несколько, в частности, схема Пашена–Рунге. 
В приборах, построенных по этой схеме, входная 
щель, вогнутая решетка и выходная щель либо 
фотоприемник устанавливаются неподвижными 
на круге Роуланда, являющемся линией диспер-
сии, и механически не связанными друг с другом. 
С переходом в УФ область у призм и дифракци-
онных решеток, как известно, существенно воз-
растает угловая и линейная дисперсия. 

Для получения минимального уровня рас-
сеянного излучения двойной полихроматор 
может строиться как по схеме с горизонтальной 
плоскостью симметрии, так и по смешанной, 
горизонтально-вертикальной схеме. Рассеянный 
свет зависит от количества оптических деталей 
в приборе: чем их меньше, тем лучше. Количе-
ственно оценить уровень рассеянного излучения 
на стадии проектирования невозможно, так как 
рассеянное излучение зависит от качества опти-
ки, культуры ее производства.

Сигналы от рассеянного назад атмосферны-
ми компонентами излучения интенсивных ис-
точников зондирования относительно слабы во 
всем спектральном диапазоне чувствительности 
метода. Применение в лидарах высокочувстви-
тельных матричных ФПУ и линеек для УФ диа-
пазона позволяет одновременно регистрировать 
спектр СКР со стоксовым сдвигом в широком 
интервале νкв, от 400 до 4000 см–1 (рис. 1), что 
дает возможность идентифицировать практиче-
ски любые вещества. Существенными достоинст- 
вами подобных ФПУ является возможность 
одновременной регистрации в одноимпульсном 
режиме и накопления сигнала детектором в 
многоимпульсном. Однако в связи с тем, что 
матричные ФПУ и линейки для УФ и видимо-
го диапазонов имеют максимальный размер 
чувствительных элементов не более 25  мм, их 
удобно использовать для обзорного анализа. Для 

обнаружения конкретно выбранных веществ и 
более надежной их идентификации предпочти-
тельно использовать ФЭУ, что дает возможность 
применять полихроматоры с высокой диспер-
сией. Модуль с ФЭУ важно выбрать с высокой 
квантовой эффективностью, определяющей в 
УФ области отношение сигнал/шум, при этом 
также необходимо учитывать темновой порог и 
темновой ток.

Повышение разрешающей способности при
боров, предназначенных для исследования рассе-
ивающих фотоны веществ, связано с быстродей-
ствием фотоприемников. В “солнечно-слепой” 
области ФЭУ по сравнению с ПЗС-модулями об-
ладают более высокими чувствительностью и бы-
стродействием, что необходимо для регистрации 
сигналов с наносекундной длительностью. При 
этом могут быть применены два метода детекти-
рования: цифровой со счетом фотонов и анало-
говый с интегральным накоплением. Оба метода 
имеют высокую скорость регистрации сигналов, 
позволяют получать хорошее пространственное 
разрешение и обеспечивают увеличение чувстви-
тельности за счет накопления сигналов. 

Поскольку измерения с помощью СКР-лидара 
ведутся путем усреднения сигналов по большому 
числу лазерных вспышек, то для зондирующего 
излучения твердотельных лазеров следует за-
даваться гауссовым угловым распределением 
интенсивности. Это позволяет рассчитать вели-
чину принимаемого приемной антенной свето-
вого потока и оптимизировать согласование всех 
оптических блоков лидара.

Прототип авиационного лидара 
с ультраспектральной селекцией

В ИЛФ НПК “ГОИ им. С.И.  Вавилова” раз-
работан и изготовлен СКР-лидар, предназначен- 
ный для непрерывного аэропоиска, идентифика-
ции и измерения мощности и поля концентрации 
утечек газов на трансконтинентальных нефте- и 
газопроводах (рис. 3). В нем ультраспектральное 
разрешение достигнуто за счет лазерного зон-
дирования и регистрации приемных сигналов в 
“солнечно-слепой” области длин волн, где фоно-
вые помехи на фотоприемное устройство лидара 
практически сведены к нулю. По реализован- 
ному спектральному разрешению (λ/∆λ >> 1000) 
данный авиационный лидар превосходит извест-
ные аналоги почти на два порядка. Его отличают 
повышенные чувствительность и информатив-
ность в сочетании с широким диапазоном диагно-
стируемых антропогенных выбросов. В разработ-
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ке лидара использованы новейшие достижения 
и технологии в области твердотельных лазеров 
с диодной накачкой [22–24], высокопрецизион-
ной ультрафиолетовой оптики, фотоприемных 
устройств [25], а также в области фоноцелевых 
моделей [26], автоматизированных средств ре-
гистрации и обработки сигналов в гигагерцовом 
диапазоне частот [27]. Существующие в мире 
аналоги рассчитаны на обнаружение лишь огра-
ниченного набора веществ и не обеспечивают 
измерений распределения поля концентраций 
аномальных примесей в окружающей среде с 
уровнем ниже 1013 см–3. Решения, заложенные в 
данном приборе, позволили реализовать чувстви-
тельность измерения концентрации на уровне 
существенно ниже ПДК практически для любой 
вредной примеси в атмосфере. 

Технические характеристики созданного прототипа 
авиационного СКР-лидара

Высота полета, м 			   100–1000
Спектральное разрешение (λ/∆λ) 	 10 000
Пространственное разрешение, м	 0,3–3
Напряжение питания, В 	 27
Мощность электропитания кВт	 0,7
Габаритные размеры, мм	 1200×660×1120
Масса, кг	 65

Бортовой лидар построен по модульному 
принципу и содержит следующие основные 
компоненты:

• твердотельный лазер с диодной накачкой и 
преобразователем гармоник,

• телеобъектив,
• полихроматор с отрезающим фильтром, 
• детекторы, 
• дальномер и блок контроля зондирующего 

пучка,
•  ПК с специализированным программным 

обеспечением.
Моностатическая оптическая система экспе-

риментального образца построена по схеме Кас
сегрена. Лазерный пучок совмещается системой 
поворотных зеркал с осью приемного телеобъек-
тива и направляется в обследуемую область атмо
сферы. Рассеянное назад рамановское излучение 
попадает в ФПУ, состоящее из телеобъектива, по-
лихроматора и детекторов. Входной телеобъектив 
построен на основе зеркальной оптики, что по-
зволило иметь входной зрачок крупного размера 
(350 мм). Зондирование осуществляется на длине 
волны λ = 261,7 нм малогабаритным твердотель-
ным лазером с диодной накачкой и частотным 
преобразованием гармоник. 

Активной средой лазера является кристалл 
YLF:Nd. Накачка двух кристаллов осуществля-
ется лазерными диодными линейками импульс-
ной мощностью 100 Вт каждая, по 8 линеек на 
каждый активный элемент. Для модуляции 
добротности резонатора используется электро-
оптический затвор. Высоковольтный блок управ-
ления модулятора располагается в отдельном 
отсеке лазерной головки. 

На длине волны λ = 1047 нм лазер генерирует 
импульсы с энергией 50  мДж, длительностью 
6  нс и темпом следования 100  с–1. Фундамен-
тальная частота (λ = 1047 нм) удваивается в не-
линейном кристалле КТР с эффективностью пре-
образования 50%. Далее излучение с λ = 523,5 нм 
преобразуется по частоте в кристалле ВВО. 
Энергия излучения на λ = 261,7 нм номинально 
составляет 6 мДж, в форсированном режиме до-
стигает 10 мДж. Реализованный в лазере режим 
TEM00 способствует длительной, безотказной 
работе нелинейного кристалла BBO.

Лазер не имеет жидкостного охлаждения. 
Термостабилизация диодных линеек и активного 
элемента осуществляется термоэлектрически- 
ми элементами Пельтье. Нелинейные кристал-
лы поддерживаются при температуре около 
50 °С специальными нагревательными элемен-
тами. В качестве радиатора используется корпус 
лазера с ребрением (рис.  4). Принудительный 
обдув радиатора осуществляется тремя венти-
ляторами. 

Рис. 3. Бортовой лидар для аэропоиска утечек 
на газопроводе.
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Корпус лазера выполнен герметичным и за-
полнен сухим воздухом. Температурный диа-
пазон работы лазера от минус 10° до плюс 35 °С, 
влажность до 100%. Блок управления излуча-
телем располагается отдельно. Питание лазера 
осуществляется от бортовой сети постоянного 
тока напряжением 27 В ± 10%. Максимальная 
потребляемая мощность 350 Вт. 

Технические характеристики лазера

Длина волны, нм 	 0,262

Энергия в импульсе, мДж 	 6

Длительность импульса (FWHM), нс 	 6

Темп следования импульсов, с–1 	 100

Расходимость, мрад 	 1,5

Габаритные размеры 
лазерной головки, мм	 400×182×142 

Поворотные зеркала, выводящие излучение в 
атмосферу, выполнены с диэлектрическими по-
крытиями, селективно отражающими лишь на 
λ = 261,7 нм. Зеркала Кассегрен-телеобъектива 
выполнены облегченными из ситалла СО 115М 
с УФ диэлектрическими покрытиями. Относи-
тельное отверстие объектива 1:3, световой диа-
метр 350 мм, мгновенное поле зрения 1,5 мрад.

Спектрометрический канал в данном лида-
ре представляет собой двойной полихроматор 
со сложением дисперсий и тремя детекторами 
для регистрации в атмосфере азота, метана и 
сероводорода. Двойной полихроматор работает 
в диапазоне 264–294  нм и содержит фильтр, 
отрезающий излучение с длиной волны короче 
266  нм; две широкоапрертурные стигматиче-
ские голограммные решетки 2-го типа и три 
щели: входную, промежуточную и выходную. 
Отрезающий фильтр (фирмы Barr Associate Inc., 
США) служит для защиты приемного канала от 
рассеянного лазерного излучения. Каждая ре-
шетка выполнена с пространственной частотой 
N  =  3600  мм–1, радиус R  =  500  мм и для длин 
волн около 280 нм имеет разрешающую силу на 
уровне 450  000 и спектральный коэффициент 
отражения 60%. 

Использование в приемном канале голо
граммных оптических элементов (рис.  5) по-
зволило не только снизить шумовые характери- 
стики в сравнении с нарезными решетками, об-
ладающими заметным светорассеянием, но и 
работать с широкой апертурой, поскольку в от-
личие от нарезных они свободны от сферической 
аберрации и астигматизма [28].

Далее приведены соотношения, связывающие 
основные параметры дифракционных решеток.

Углы падения y и дифракции j

siny + sinj = klN,                              (1)

где k = 1, 2, 3, … – порядок спектра, N – количе-
ство штрихов решетки на 1 мм;

Рис.  4. Твердотельный лазер с диодной на-
качкой – источник зондирования.

Рис.  5. Широкоапертурная вогнутая голо-
граммная решетка.
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угловая дисперсия

dϕ/dλ = k/(bcosϕ),                          (2)

линейная дисперсия 

dl/dλ = fdϕ/dλ,                            (3)

где f – фокусное расстояние;
предельная разрешающая способность

λ/∆λ = Nb/λ = h/λ,                       (4)

где b – период решетки, h – ширина заштрихо
ванной части решетки. Таким образом, разреша-
ющая сила пропорциональна количеству штри-
хов на всей площади дифракционной решетки.

Полихроматор работает в диапазоне спектра 
264–294  нм и собран на основе двух вогнутых 
голограммных решеток с размером заштрихо-
ванной части 125 мм (N  =  3600  мм–1), каждая 
из которых имеет разрешающую силу на уровне 
450 000 для длин волн около 280 нм и спектраль-
ный коэффициент отражения 60%. Суммарная 
обратная линейная дисперсия вогнутой дифрак-
ционной решетки для двойного полихроматора 
получена равной dλ/dl = 0,224 нм/мм. Такое уль-
траспектральное разрешение позволяет уверенно 
разделить линии метана (283,31 и 284,42  нм), 
азота (278,69  нм) и сероводорода (280,89  нм). 
В  частности, при разнице длин волн 4,62  нм у 
молекул СН4 и N2 линейное расстояние в полих-
роматоре составляло 20,6 мм. 

Параметры ФЭУ модели R6350 
(фирма Hamamatsu, Япония), 

выбранного в качестве фотоприемников

тип фотокатода 	 сурьмяно-цезиевый

размеры фотокатода, мм 	 4×13

область спектральной 
чувствительности, нм 	 180–630

спектральная чувствительность 
фотокатода sК, λ, А/Вт 	 4,8×10–2

максимум спектральной 
чувствительности, нм 	 340

анодный темновой ток IT.A, А	 2,0×10–11

коэффициент усиления М не менее 	 4,0×107

темновой ток фотокатода 
IT.К = IT.A/М, А 	 5,0×10–19

пороговая чувствительность 
Fпор = IT.К /sК,λ (с/ш = 1), Вт 	 1,0×10–17

квантовый выход η на λ = 280 нм 	 0,20.

Приемный канал в лидаре работает с порого-
вым уровнем сигналов на входном зрачке объ-
ектива в несколько десятков фотонов. Cчет фо- 
тонов осуществлялся в режиме стробирования 
сигнала и синхронного накопления зарядов у 

детекторов. В таком режиме критерием их ка-
чества становилось статистическое соотношение 
сигнал/шум, однозначно определяющее вероят-
ность обнаружения СКР сигнала и точность его 
измерения.

Сигнал обратного рассеяния, принятый ФЭУ 
и прошедший через импульсный усилитель, 
стробируется по дальности около момента вре-
мени 2L/c c шириной строба tстр. Импульс строба 
задается генератором, запускаемым от старто-
вого (лазерного) импульса, и сдвигается цепью 
задержки до совмещения его с моментом при-
хода рассеянного сигнала 2L/c. Таким образом, 
стробирование позволяло регистрировать только 
те фотоны, которые прошли внутри строба, и 
эффективно подавлять шумы вне временного от-
резка tстр = 0,6–3,0 мкс при L = 100–500 м.

Минимизация времени получения искомой 
информации, как правило, требует представлять 
результат в цифровом виде. В лидаре фотопри-
емники в приемном канале действуют в субги-
гагерцовом диапазоне частот. Во время работы 
использовались системы сбора регистрируемых 
данных на основе высокоскоростной шины пере-
дачи данных PXI и платформы Compact DAQ от 
компании National Instruments, позволяющие 
проводить plug-and-play USB-подключения для 
проведения измерений непосредственно в поле-
вых условиях. 

Разработанный лидар был установлен на 
борту вертолета МИ-8, испытан в условиях ре-
альной трассы газопровода и передан в 2006 году 
дочернему предприятию ОАО “Газпром”. В про-
цессе проведения инспекции обследуемой трассы 
аппаратура позволила не только обнаруживать 
утечки метана, но и получать пространственное 
распределение его концентраций в зоне очаговых 
утечек (рис. 6). В тестовых измерениях на высоте 
полета от 100 до 450 м были установлены данные 
по чувствительности лидара к метану (6 ppm) и 
сероводороду (2 ppm).

В режиме накопления аппаратура вполне обе-
спечивает измерения концентраций веществ на 
уровне, близком к фоновым значениям. Достиг-
нутый практически нулевой уровень фоновых 
помех в дальнейшем позволит осуществлять сбор 
информации на сильно наклонных приземных 
трассах при широкоформатном сканировании и 
зондировании.

При эксплуатации бортового лидара большое 
значение имеет синхронизация работы всех его 
компонентов. Привязка координат местности к 
результатам аэропоиска утечек газа производи-
лась посредством спутниковой навигационной 
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системы GPS, синхронизированной по мирово-
му времени с блоками регистрации, обработки 
и записи информации. Синхронизация всех 
компонентов лидара реализуется на основе 
импульса, подаваемого от специальной платы 
GPS-приемника на внутренние подсистемы ли-
дара. При этом любой фиксируемый сигнал СКР 
снабжается временной меткой, а непрерывная 
запись и архивирование получаемой информа- 
ции осуществляется на встроенном жестком 
диске.

Заключение

Коллективом Института лазерной физики 
развиты уникальная лазерно-оптическая эле-
ментная база, новейшая технология УФ высо-

копрецизионной и дисперсионной оптики, соз-
даны и внедрены на различных предприятиях 
серии малогабаритных твердотельных лазеров с 
диодной накачкой, используются новейшие до-
стижения в области фотоприемных устройств, 
фоноцелевых моделей, автоматизированных 
средств регистрации и обработки сигналов в 
гигагерцовом диапазоне частот. Накопленный 
научно-технический задел и практический 
опыт в разработках лазерных информационных 
комплексов явился основой для развития и реа-
лизации новой технологии создания многофунк-
циональных авиационных лидаров.

Технические характеристики созданного уль-
траспектрального рамановского лидара отлича-
ются универсальностью и широким диапазоном 
в регистрации и идентификации комплекса ве- 
ществ, составляющих биосферу Земли, инфор-
мативны по программному обеспечению и по 
фоноцелевой обстановке, а также обладают рядом 
существенных достоинств по стоимости и сервис-
ному обслуживанию. Модульная конструкция 
обеспечивает максимум надежности и ремонтопри-
годности в полевых условиях. Летные натурные 
испытания рамановского лидара показали, что в 
режиме накопления аппаратура вполне обеспечи-
вает измерения концентраций веществ на уровне, 
близком к фоновым значениям.

В СКР-лидарах с многоэлементными при-
емниками заложены большие возможности для 
развития и совершенствования диагностиче
ской аппаратуры экологического назначения. 
Использование лидаров на основе ультраспек-
тральных приборов для решения задач эколо-
гии, исследований опасных газов техногенного 
происхождения, появляющихся в атмосфере при 
уничтожении отходов, мусора, отравляющих 
и взрывоопасных веществ, поисков произрас-
тания наркотических растений – это далеко не 
полный охват возможных применений подобной 
аппаратуры.

Авиационный лидар с ультраспектральным 
разрешением может найти широкое применение 
не только при оперативном контроле состояния 
приземной атмосферы, экологической безопас-
ности среды, но и для проведения широкого 
круга исследований в интересах физики и химии 
атмосферы, геофизики и геологии.
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