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Аннотация
Предмет исследования. Пространственно-спектральные искажения, возникающие при аку-

стооптической дифракции, которые необходимо учитывать при построении оптической системы 
и калибровке акустооптического прибора. Цель работы. Пространственно-спектральная коррек-
ция видеоспектрометров на основе акустооптических перестраиваемых фильтров, разработка 
методики выравнивания коэффициента пропускания во всем рабочем спектральном диапазоне. 
Метод. Для получения неискаженных данных требуется корректировать как спектральные, так 
и пространственные неоднородности. Процедура калибровки состояла из аппаратной настройки 
акустооптического прибора и программно-математической коррекции. Управление функцией 
пропускания фильтра осуществляется двумя параметрами: частотой и мощностью ультразвука, 
которые в свою очередь определяются частотой и эффективной амплитудой электрического сиг-
нала. Частота определяет положение функции пропускания, т.е. длину волны работы акустооп-
тического фильтра. Амплитуда задает мощность ультразвука, которая определяет интенсивность 
прошедшего через фильтр излучения. Полный учет неравномерности коэффициента пропуска-
ния во всем спектральном диапазоне достигается постобработкой. Основные результаты. Пред-
ложена методика выравнивания мощности излучения за счет изменения подаваемой мощности 
ультразвука. Разработанное программное обеспечение позволяет минимизировать искажения, 
вносимые акустооптическими фильтрами, с целью визуальной оценки информации. Методика 
апробирована на видеоспектрометре ближнего инфракрасного диапазона с двойной акустоопти-
ческой фильтрацией. Практическая значимость. Представленный метод дает возможность про-
водить аппаратную калибровку гиперспектральных устройств на основе акустооптических филь-
тров, а также осуществлять программную коррекцию отображаемых результатов в реальном вре-
мени. Разработанный метод универсален и подходит и для других видеоспектрометров на основе 
акустооптической фильтрации. Он позволит поднять акустооптические методы на более высокий 
уровень как в надежности полученных данных, так и в удобстве использования таких приборов.
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метр, гиперспектральная визуализация, пространственно-спектральная калибровка
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Abstract
Subject of study. Spatial-spectral distortions arising from acousto-optic diffraction, which must 

be taken into account when constructing an optical system and calibrating an acousto-optical device. 
Aim of study. Spatial and spectral calibration of videospectrometers based on acousto-optical tunable 
filters. Technique for equalizing the transmittance of the acousto-optical tunable filter in the entire 
working spectral range. Method. To obtain undistorted data, it is necessary to correct both spectral 
and spatial inhomogeneities. The calibration procedure consisted of hardware spectral tuning of 
the acousto-optical device and software-mathematical correction. The transmission function of the 
acousto-optical tunable filter is controlled by two parameters: frequency and power of ultrasound, 
which in turn are determined by the frequency and effective amplitude of the electrical signal. The 
frequency determines the position of the transmission function, that is, the wavelength of the acousto-
optical tunable filter. The amplitude sets the ultrasound power, which determines the intensity of the 
radiation passed through the acousto-optical tunable filter. Full consideration of the non-uniformity 
of the transmission coefficient in the entire spectral range is achieved by post-processing. Main 
results. A technique for leveling the radiation power by changing the supplied ultrasound power is 
proposed. The developed software makes it possible to minimize the distortions introduced by acousto-
optical tunable filters in order to visually evaluate information. The technique was tested on a near-
infrared videospectrometer with double acousto-optic filtering. Practical significance. The presented 
method makes it possible to carry out hardware calibration of hyperspectral devices based on acousto-
optical tunable filters, as well as to implement software correction of the displayed results in real 
time. The developed method is universal and suitable for other videospectrometers based on acousto-
optic filtering. It will allow raising acousto-optic methods to a higher level both in the reliability of the 
data obtained and in the convenience of using such devices.
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ВВЕДЕНИЕ
Видеоспектрометрия, или гиперспектральная 
визуализация, является мощным неинвазив-
ным методом для решения задач контрастно-
го выделения объектов, обладающих опреде-
ленными физико-химическими свойствами. 
Видеоспектрометры — это оптико-электрон-
ные приборы для регистрации куба прост-
ранственно-спектральных данных, что дает 
возможность проводить спектральные и про-
странственные измерения в различных обла-
стях применения: дистанционное зондирова-
ние [1], биомедицинская диагностика [2], не-
разрушающий контроль и др. [3, 4].

Гиперспектральная визуализация реализу-
ется разными видами сканирования — по про-
странству и/или по спектру [5]. Акустоопти-
ческие фильтры (АОФ) обеспечивают спек-
тральную перестройку. Благодаря тому, что 
данные спектральные элементы являются 
полностью программно-управляемыми — без 
механического сканирования, в акустоопти-
ческих (АО) видеоспектрометрах есть возмож-
ность выборочно регистрировать изображения 
лишь в интересующих интервалах длин волн. 
Это позволяет увеличить скорость сбора дан-
ных и уменьшить их объем. По этим и другим 
причинам АО устройства получают все боль-
шее распространение. 

Пользователю таких приборов важна точ-
ность полученной с его помощью информации. 
И важной процедурой, определяющей точ-
ность, является калибровка или коррекция 
в зависимости от задачи. Раннее были реа-
лизованы различные методы калибровок и 
коррекций АО приборов: метод коррекции 
спектральных искажений [6], геометриче-
ская [7], пространственно-спектральная [8], 
радиометрическая калибровки [9, 10] и др. 
[11–13]. Но все эти методы используются 
уже в постобработке. Задача настоящей ра-
боты — минимизирование иска жений, вно-
симых АО прибором, с целью визуальной 
оценки информации в реальном времени. 
Для этого разработана методика калибров-
ки, которая проводится один раз сразу по-
сле изготовления прибора, по результатам 
которой выполняется программная коррек-
ция всех отображаемых результатов: кор-
ректируется значение интенсивности в каж-
дом пикселе изображения на каждой длине 
волны.

Таким образом, целью работы, результаты 
которой изложены в статье, являлись про-
странственно-спектральная коррекция видео-
спектрометров на основе АО перестраиваемых 
фильтров и разработка методики выравнива-
ния коэффициента пропускания АОФ во всем 
рабочем спектральном диапазоне.

ОСОБЕННОСТИ РАБОТЫ 
АКУСТООПТИЧЕСКИХ ПРИБОРОВ
Принцип действия АОФ основан на брэггов-
ской дифракции света на динамической зву-
ковой решетке [14, 15]. Управление фильтра-
цией излучения осуществляется изменением 
частоты и мощности ультразвука. Преиму-
ществами таких фильтров являются высокое 
быстродействие, достаточно широкий спек-
тральный диапазон, высокое пространствен-
ное и спектральное разрешение, малые масса 
и габарит. Но при построении оптической схе-
мы и калибровке прибора необходимо учиты-
вать пространственно-спектральные искаже-
ния, возникающие при АО дифракции.

Описанная ниже процедура коррекции 
разработана для калибровки видеоспектроме-
тра ближнего инфракрасного (ИК) диапазона 
с двойной АО фильтрацией с параллельным 
ходом лучей через АОФ [16]. В нашем случае 
поле зрения АОФ не превышает его «квазимо-
нохроматическую» угловую апертуру (2–4), 
а оптическая схема рассчитана таким образом, 
чтобы аберрации были минимизированы [17]. 
Первое обеспечивает монохроматичность изо-
бражения, так как исключает наличие спек-
тральных неоднородностей по полю, а вто-
рое сводит пространственные искажения, свя-
занные с оптическими аберрациями, к мини-
муму. 

В случае, если спектральное устройство 
имеет угловое поле АОФ, превышающее раз-
мер его классической («квазимонохромати-
ческой») угловой апертуры, то в процедуру 
калибровки необходимо включить метод кор-
рекции пространственно-спектральной неод-
нородности пропускания АОФ, описанный 
в работе [18].

Разработанная методика применена к при-
бору [19], работающему в ближнем ИК диа-
пазоне (850–1600 нм) и формирующему изо-
бражение далеко расположенных объектов 
в пределах углового поля 15 с пространствен-
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ным разрешением около 200150 элементов. 
Акустооптический фильтр данного видео-
спектрометра состоит из двух идентичных АО 
ячеек (АОЯ), однако из-за их конструктивных 
особенностей они имеют различные перестро-
ечные характеристики. Поэтому используется 
двухканальный синтезатор-усилитель, кото-
рый через программное обеспечение (ПО) по-
лучает команды из файла управления. В дан-
ном файле сопоставлены значения требуемой 
длины волны , подаваемых на АОЯ частот f1, 
f2 и эффективных амплитуд A1, A2 электриче-
ского сигнала, которые задают мощности аку-
стических сигналов P1, P2. Такой файл фор-
мируется индивидуально для каждой АОЯ.

Спектральные изображения формируются 
на матричном приемнике излучения. В качестве 

приемника используется охлаждаемый сенсор 
Sony IMX 990-AABA-C, входящий в состав ви-
деокамеры SWIR1300KMA фирмы ToupTek. 

Представленная ниже методика калибров-
ки универсальна и может применяться  для лю-
бых АО видеоспектрометров, обладающих раз-
личными техническими характеристиками.

Основными факторами пространственно-
спектральных искажений являются

1) несовпадение расчетной перестроечной 
характеристики (f) с реальной, а также раз-
личие этих зависимостей для двух использу-
емых АОЯ,

2)  спектральная неоднородность коэффи-
циента АО дифракции, под которым понима-
ется количество энергии в пучке, вышедшем 
из АОФ, по отношению к падающему,
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Рис. 1. Этапы пространственно-спектральной коррекции (а). АН — аппаратная настройка, ПрК — 
программная коррекция, ПО — программное обеспечение. Демонстрация преобразования 

гиперспектрального куба данных в результате комплексной коррекции (б)

Fig. 1. (а) Stages of spatial-spectral correction. АН is hardware customization, ПрК is software correction, 
ПО is software. (б) Demonstration of the transformation of the hyperspectral data cube as a result of complex 

correction 
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3) нелинейная зависимость коэффициента 
АО дифракции от подаваемой мощности уль-
тразвука,

4) пространственная неоднородность коэф-
фициента пропускания оптической системы,

5) спектральная чувствительность прием-
ника излучения.

Перечисленные факторы учтены в методи-
ке. На рис. 1а приведен алгоритм простран-
ственно-спектральной коррекции данных, 
который более подробно будет описан  далее. 
Он состоит из аппаратной настройки (АН) АО 
прибора и последующей программной коррек-
ции (ПрК) данных.

Изначально пользователь, задавая требу-
емые длины волн в ПО АО видеоспектроме-
тра, получает изображения, соответствую-
щие близким, но не истинным длинам волн 
0   (из-за обозначенных выше факторов 1 
и 3), и с неинформативными интенсивностя-
ми в каждом пикселе I0(x, y, 0) (из-за факто-
ров 2, 4, 5), т.е. в каждом пикселе получает-
ся некорректная спектральная информация 
об объекте. Это происходит в первую оче-
редь из-за некорректного файла управления. 
Этап коррекции файла в данной методике 
называется АН (НС), результатом ее работы 
является то, что выделяемая длина волны
НС становится равной требуемой , а интен-
сивности в каждом пикселе изображения 
IНС(x, y, НС) становятся близкими к кор-
ректным I(x, y, ). Затем на этапе ПрК (SC) 
осуществляется математическая коррекция 
пространственно-спектральных данных, по-
лученных после АН. В результате работы АО 
видеоспектрометра пользователь получает 
верные пространственно-спектральные дан-
ные ISC(x, y,) = I0(x, y, 0). На рис. 1б пред-
ставлено графическое представление описан-
ных этапов коррекции на примере гиперспек-
тральных кубов. 

ПРОСТРАНСВЕННО-СПЕКТРАЛЬНАЯ 
КОРРЕКЦИЯ
Для получения неискаженных данных требу-
ется корректировать как спектральные, так и 
пространственные неоднородности. 

Основными параметрами для управления 
функцией пропускания АОФ являются часто-
та и мощность ультразвука, которые в свою 
очередь определяются акустической частотой f 

и эффективной амплитудой A электрического 
сигнала соответственно. Частота ультразвука 
определяет положение функции пропускания, 
т.е. длину волны работы АОФ (f). Амплитуда 
задает мощность ультразвука P(A), которая 
определяет интенсивность дифрагированного 
излучения I(A). В случае двойного АОФ коли-
чество параметров f и A увеличивается в 2 раза, 
так как в фильтрации участвуют две АОЯ.

Эти параметры записаны в файле управле-
ния. Каждой длине волны соответствуют ча-
стота f1 и амплитуд а A1, относящиеся к первой 
АОЯ, и частота f2 и амплитуда A2, относящиеся 
ко второй. Для удобства A1 = A2. Определение 
корректных параметров файла управления 
происходит на этапе АН.

Аппаратная настройка
Первым шагом в АН прибора является про-
цедура совмещения окон пропускания обеих 
АОЯ (рис. 2). Для этого был разработан двух-
канальный синтезатор-усилитель высокоча-
стотного сигнала с возможностью задания раз-
ных частот ультразвука в разных каналах f1 
и f2. На рис. 2а представлены окна пропуска-
ния АОЯ до выполнения АН, а рис. 2б демон-
стрирует результат корректного совмещения 
окон пропускания, что дает наибольшую ин-
тенсивность и конкретную длину волны опти-
ческого сигнала при двойной АО фильтрации.

Данная процедура синхронизации пере-
строечных характеристик двух АОЯ (fHC) 
проводилась на калибровочном стенде, в ко-
тором в качестве источника использован пере-
страиваемый монохроматор Solar M266 на ос-
нове плазмы, а приемного устройства — спек-
трометр Ocean Insight FLAMENIR (рис. 2в, г).

На первом шаге АН в файл управления за-
писываются верные акустические частоты 
fHC1 и fHC2, подаваемые на двойной АОФ.

Одна из главных задач коррекции — 
выравнивание коэффициента пропускания 
АОФ во всем рабочем спектральном диапазо-
не (850–1600 нм), так как обычно АОФ имеет 
неравномерную спектральную характеристи-
ку пропускания (). Функция пропускания 
АОФ зависит от подаваемой акустической 
мощности, которую задает эффективная ам-
плитуда P(A) (рис. 3а). Данный этап АН за-
ключается в получении зависимостей I(A) на 
разных длинах волн и определении значений 
Amax (рис. 3б). Далее измеряется спектральная 
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Рис. 2. Процедура синхронизации перестроечных характеристик двух АОЯ (fАН). Результаты 
неправильного (а) и правильного (б) совмещения окон пропускания двух разных АОФ. Схема (в) и фото 

(г) калибровочного стенда

Fig. 2. Procedure for synchronization of tuning characteristics of two acousto-optical cells (fНС). Results of 
(а) incorrect and (б) correct matching of transmission windows of two different acousto-optical tunable filters. 
(в) Scheme and (г) photo of the calibration stand. АН — hardware customization, АОЯ —  acousto-optical cell

Рис. 3. Алгоритм АН для выравнивания спектральной характеристики пропускания АО фильтрации (а), 
(б), (в). Для определения () (в) использовались две схемы получения изображений: с двойным АО 

фильтром (д) и без него (г). Фото калибровочного стенда второго этапа АН (е)

Fig. 3. (а) (б), (в) Hardware customization algorithm for leveling the spectral transmission characteristic of 
acousto-optic filtering. To determine () (в), two imaging schemes were used: (д) with a double acousto-optical 
tunable filter and (г) without it. (е) Photo of the calibration stand of the second stage of hardware customization. 

АОФ is acousto-optical tunable filter 
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характеристика пропускания АОФ во всем ра-
бочем диапазоне(), построенная при A = Amax 
(рис. 3в),

w/ AOTF

w/o AOTF

max
max

, )
( , ) ,

(
( )

I A
A

I


 


=

где Iw/o AOTF() — спектр источника, полу-
ченный в схеме без двойного АОФ (рис. 3г), 
Iw/AOTF() — спектр, полученный посредством 
АО видеоспектрометра, частью которого явля-
ется двойной АОФ (рис. 3д). Таким образом, 
по приведенной формуле измеряется имен-
но коэффициент пропускания АОФ, а дру-
гие факторы, например, спектральная чув-
ствительность приемника излучения, не учи-
тываются. Затем коэффициент пропускания 
АОФ выравнивается путем подбора значений 
A  AHC  (рис. 3в).

На данном этап е АН в качестве приемника 
использовалась видеокамера АО видеоспек-
трометра. Упрощенная схема и фотография 
прибора в открытом виде представлены на 
рис. 3д, е. При съемке по схеме без АО филь-
трации (рис. 3г) вынимался только двойной 
АОФ, а все остальные элементы оставались на 
месте. 

Таким образом, выполнено аппаратное вы-
равнивание коэффициента пропускания, ко-
торое является заключительным шагом АН.

В результате действий, описанных в данном 
разделе, достигнута цель АН — создан файл 
управления, при использовании которого в ПО
выделяемая длина волны НС становится рав-
ной , а интенсивности в каждом пикселе изо-
бражения IНС(x, y, НС) становятся близкими 
к корректным I(x, y, ).

Программная коррекция
Компенсация пространственных неоднород-
ностей коэффициента передачи оптического 
тракта осуществлялась путем получения изо-
бражения равномерно освещенного объекта 
Isph(x, y). В качестве такого объекта служило 
выходное окно интегрирующей сферы, облу-
ченной галогенными источниками (рис. 4). 

Вычислены корректировочные простран-
ственные коэффициенты Kpr для каждого 
пиксела по формуле

( )sph

sph
pr

max ( , )
.,

, )
)

(
(K x

I
y

I x y

x y
=

Параметры каждого изображения, получае-
мого АО видеоспектрометром, в реальном вре-
мени умножаются на полученную матрицу 
коэффициентов

Cpr pr H( , , ) ) ( , ,( ., )xI x y K I x yy =

После выполнения всех описанных проце-
дур результатом работы АО видеоспектроме-
тра является регистрация пространственно-
спектрального распределения интенсивности, 
содержащего информацию как об объекте, 
так и об облучающем его источнике (произве-
дение спектров источника и объекта). 

Поскольку прибор может использоваться 
с разными источниками излучения, то для 
определения спектра объекта в ПО предусмо-
трена возможность деления регистрируемого 
спектра на спектр источника. 

Для этого в начале каждой серии экспери-
ментов пользователю необходимо зарегистри-
ровать изображения эталонного (равномер-
но рассеивающего во всем спектре) объекта 
Iref(x, y). В ПО вычисляются следующие спек-
тральные коэффициенты:

( )ref
sp

ref

max ( )
,)

( )
(

I
K

I





=

после чего интенсивность исследуемого объек-
та вычисляется по формуле

sp sS pC pr( , , ) ( , , ) ( , , ).( )I x y I x y K I x y   = =

Рис. 4. Пространственная коррекция по полю 
с помощью интегрирующей сферы

Fig. 4. Spatial field correction using an integrating 
sphere
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За счет такой «быстрой» постобработки 
происходят окончательное выравнивание ко-
эффициента пропускания во всем спектраль-
ном диапазоне и учет спектра излучения ис-
точника. 

Данная программно-математическая кор-
рекция происходит в реальном времени и 

пользователь сразу видит скорректированное 
изображение и спектр исследуемого объекта.

РЕЗУЛЬТАТЫ
Описанная процедура пространственно-спек-
тральной коррекции апробирована на видео-
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Рис. 5. Спектр эталона до калибровок (а), фотография исследуемого объекта с эталоном в кадре (б), один 
из кадров с АО видеоспектрометра с выделенными областями для анализа спектров (в), спектры 
интересующих областей после калибровок (г). Синие кривые — спектры эталонного объекта (листа белой 
бумаги) до коррекции (а) и после нее (г). Зеленая кривая — спектр исследуемого объекта. Красная 

кривая — справочный спектр растительности [1]

Fig. 5. (а) Spectrum of the standard (sheet of white paper) before calibrations, (б) photo of the object under 
study with the reference in the frame, (в) one of the frames from the acousto-optic videospectrometer with 
selected regions for spectrum analysis, (г) spectra of the regions of interest after calibrations. The blue curves 
are the spectra of the reference object (а) before and (г) after correction. The green curve is the spectrum of the 

object under study. The red curve is the reference spectrum of vegetation [1]
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спектрометре ближнего ИК диапазона с двой-
ной АО фильтрацией.

В ПО для управления АО видеоспектроме-
тром были внесены данные, полученные при 
калибровке, после этого выполнено экспери-
ментальное исследование АО прибора.

На рис. 5 приведены результаты экспери-
мента, демонстрирующие эффективность ком-
плексной калибровки. Видно, что данная ме-
тодика позволяет минимизировать искаже-
ния, вносимые прибором, с целью визуальной 
оценки информации. Из рис. 5 а, г видно, что 
спектр выровнялся, а, следовательно, спектр 
исследуемого объекта (рис. 5б, в) стал более 
информативным для первичной оценки. Это 
подтверждает совпадение экспериментальной 
кривой со справочной кривой спектра расти-
тельности [1].

ЗАКЛЮЧЕНИЕ
Представленный метод дает возможность прово-
дить аппаратную калибровку гиперспектраль-
ных устройств на основе АОФ, а также осущест-
влять программную коррекцию отображаемых 
результатов в реальном времени. Предложена 
методика выравнивания мощности излучения 
за счет изменения подаваемой мощности уль-
тразвука. Разработанное ПО позволяет мини-
мизировать искажения, вносимые АОФ, с це-
лью визуальной оценки информации. Методика 
апробирована на видеоспектрометре ближнего 
ИК диапазона с двойной АО фильтрацией. 

Разработанный метод универсален, подхо-
дит и для других видеоспектрометров на ос-
нове АО фильтрации. Он позволит повысить 
информативность АО методов и удобство ис-
пользования таких АО приборов.
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