ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

DOI: 10.17586/1023-5086-2024-91-06-121-133

УДК: 54.057, 546.05, 620.3

Бессвинцовые нанокристаллы перовскита: методы синтеза и их оптические свойства. Обзор

Ссылка для цитирования:
Тимкина Ю.А., Скурлов И.Д., Литвин А.П., Ушакова Е.В. Бессвинцовые нанокристаллы перовскита: методы синтеза и их оптические свойства. Обзор // Оптический журнал. 2024. Т. 91. № 6. С. 121–133. http://doi.org/10.17586/1023-5086-2024-91-06-121-133

 

Timkina Yu.A., Skurlov I.D., Litvin A.P., Ushakova E.V. Lead-free metal halide perovskite nanocrystals: synthesis and optical properties. Review [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 121–133. http://doi.org/10.17586/1023-5086-2024-91-06-121-133

Ссылка на англоязычную версию:
-
Аннотация:

Предмет исследования. Бессвинцовые нанокристаллы перовскита, их основные характеристики, методы синтеза и оптические свойства. Цель исследования. Проведение анализ литературных источников по методам синтеза и оптическим свойствам бессвинцовых нанокристаллов перовскита (бПНК). Определение процесса формирования бессвинцовых нанокристаллов перовскита, основные методы синтеза. Установление зависимости размера и значения квантового выхода фотолюминесценции от параметров синтеза, таких как метод, температура, тип лиганда. Основные результаты. Был проведён анализ литературных данных по теме «Методы синтеза и оптические свойства бессвинцовых нанокристаллов перовскита». Определено, что формирование бессвинцовых нанокристаллов перовскита происходит по моделям Ла Мера и кластерной модели. Анализ литературных данных показал, что основными методами получения бессвинцовых нанокристаллов перовскита являются метод горячего впрыска и переосаждения в присутствии лигандов. Было показано, что увеличение температуры реакции приводит к увеличению среднего размера бессвинцовых нанокристаллов перовскита. Было установлено, что для бессвинцовых нанокристаллов перовскита, полученных методом переосаждения в присутствии лигандов, увеличение температуры реакции до 100 °С приводит к незначительному уменьшению значения квантового выхода, в то время как для бессвинцовых нанокристаллов перовскита, полученных методом горячего впрыска, значение квантового выхода фотолюминесценции практически не зависит от температуры. Было показано, что использование олеиновой кислоты в качестве лиганда приводит к формированию бессвинцовых нанокристаллов перовскита с малым разбросом по размерам, в то время как наибольшие значения квантового выхода фотолюминесценции наблюдались для бессвинцовых нанокристаллов перовскита, синтезированных в присутствии смеси лигандов. Практическая значимость. Анализ литературных источников показал, что наиболее перспективным методом синтеза бессвинцовых нанокристаллов перовскита является метод переосаждения в присутствии лигандов, так как он проще в реализации, более энергоэффективный и может быть масштабирован. Полученные таким методом бессвинцовые нанокристаллы перовскита могут применяться в качестве активного материала для устройств сенсорики, фотовольтаики и оптоэлектроники.

Ключевые слова:

нанокристаллы, перовскиты, бессвинцовые перовскиты, коллоидный синтез, статистика

Благодарность:

работа поддержана Российским научным фондом, проект № 21-73-10131

Коды OCIS: 250.5230, 230.5160, 230.5170, 160.3220, 160.1245

Список источников:

1. Stranks S.D., Eperon G.E., Grancini G. et al. Electronhole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber // Science. 2013. V. 342. № 6156. P. 341–344. https://doi.org/10.1126/science.1243982
2. Swarnkar A., Chulliyil R., Ravi V.K. et al. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots // Angew. Chemie Int. Ed. 2015. V. 54. № 51. P. 15424–15428. https://doi.org/10.1002/anie.201508276
3. Xing G., Mathews N., Sun S. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 // Science. 2013. V. 342. № 6156. P. 344–347. https://doi.org/10.1126/science.1243167
4. Etgar L., Gao P., Xue Z., et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells // J. Am. Chem. Soc. 2012. V. 134. № 42. P. 17396–17399. https://doi.org/10.1021/ja307789s
5. Heo J.-M., Cho H., Lee S.-C. et al. Bright lead-free inorganic CsSnBr3 perovskite light-emitting diodes // ACS Energy Lett. 2022. V. 7. № 8. P. 2807–2815. https://doi.org/10.1021/acsenergylett.2c01010
6. Dong H., Zhang C., Liu X. et al. Materials chemistry and engineering in metal halide perovskite lasers // Chem. Soc. Rev. 2020. V. 49. № 3. P. 951–982. https://doi.org/10.1039/C9CS00598F
7. Hu F., Zhang H., Sun C. et al. Superior optical properties of perovskite nanocrystals as single photon emitters // ACS Nano. 2015. V. 9. № 12. P. 12410–12416. https://doi.org/10.1021/acsnano.5b05769
8. Ren M., Qian X., Chen Y. et al. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics // J. Hazard. Mater. 2022. V. 426. P. 127848. https://doi.org/10.1016/j.jhazmat.2021.127848
9. Schileo G., Grancini G. Halide perovskites: current issues and new strategies to push material and device stability // J. Phys. Energy. 2020. V. 2. № 2. P. 021005. https://doi.org/10.1088/2515-7655/ab6cc4
10. Sa R., Zha W., Ma Z., et al. Stable lead-free perovskite solar cells: A first-principles investigation // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020. V. 239. P. 118493. https://doi.org/10.1016/j.saa.2020.118493
11. Ushakova E.V., Cherevkov S.A., Kuznetsova V.A. et al. Lead-free perovskites for lighting and lasing applications: A minireview // Materials (Basel). 2019. V. 12. № 23. P. 3845. https://doi.org/10.3390/ma12233845
12. Shalan A.E., Kazim S., Ahmad S. Lead-free perovskites: Metals substitution towards environmentally benign solar cell fabrication // ChemSusChem. 2019. V. 12. № 18. P. 4116–4139. https://doi.org/10.1002/cssc.201901296
13. Nasti G., Abate A. Tin halide perovskite (ASnX3) solar cells: A comprehensive guide toward the highest power conversion efficiency // Adv. Energy Mater. 2020. V. 10. № 13. P. 1902467. https://doi.org/10.1002/aenm.201902467
14. Mehrabian M., Norouzi Afshar E. Improving the efficiency of solar cells based on CsSn0.5Ge0.5I3 perovskite by using ZnO nanorods // J. Opt. Technol. 2022. V. 89. № 5. P. 302. https://doi.org/10.1364/JOT.89.000302
15. Meng X., Tang T., Zhang R. et al. Optimization of germanium-based perovskite solar cells by SCAPS simulation // Opt. Mater. (Amst). 2022. V. 128. P. 112427. https://doi.org/10.1016/j.optmat.2022.112427
16. Abdelhady A.L., Saidaminov M.I., Murali B. et al. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals // J. Phys. Chem. Lett. 2016. V. 7. № 2. P. 295–301. https://doi.org/10.1021/acs.jpclett.5b02681
17. Yang Y., Liu C., Cai M., et al. Dimension-controlled growth of antimony-based perovskite-like halides for lead-free and semitransparent photovoltaics // ACS Appl. Mater. Interfaces. 2020. V. 12. № 14. P. 17062–17069. https://doi.org/10.1021/acsami.0c00681
18. Hoefler S.F., Trimmel G., Rath T. Progress on lead-free metal halide perovskites for photovoltaic applications: a review // Monatshefte für Chemie — Chem. Mon. 2017. V. 148. № 5. P. 795–826. https://doi.org/10.1007/s00706-017-1933-9
19. Akkerman Q.A., Manna L. What defines a halide perovskite? // ACS Energy Lett. 2020. V. 5. № 2. P. 604–610. https://doi.org/10.1021/acsenergylett.0c00039
20. Zhang J., Yang Y., Deng H. et al. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots // ACS Nano. 2017. V. 11. № 9. P. 9294–9302. https://doi.org/10.1021/acsnano.7b04683
21. Akkerman Q.A., Martínez-Sarti L., Goldoni L. et al. Molecular iodine for a general synthesis of binary and ternary inorganic and hybrid organic–inorganic iodide nanocrystals // Chem. Mater. 2018. V. 30. № 19. V. 6915–6921. https://doi.org/10.1021/acs.chemmater. 8b03295
22. Jellicoe T.C., Richter J.M., Glass H.F.J. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals // J. Am. Chem. Soc. American Chemical Society. 2016. V. 138. № 9. P. 2941–2944. https://doi.org/10.1021/jacs.5b13470
23. Li Y., Vashishtha P., Zhou Z. et al. Room temperature synthesis of stable, printable Cs3Cu2X5 (X = I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum yield green emitters (X = Cl) // Chem. Mater. 2020. V. 32. № 13. P. 5515–5524. https://doi.org/10.1021/acs. chemmater.0c00280
24. Yang B., Chen J., Yang S. et al. Lead-free silver bismuth halide double perovskite nanocrystals // Angew. Chemie. 2018. V. 130. № 19. С. 5457–5461. https://doi.org/10.1002/ange.201800660
25. Pecunia V., Occhipinti L.G., Chakraborty A. et al. Leadfree halide perovskite photovoltaics: Challenges, open questions, and opportunities // APL Mater. 2020. V. 8. № 10. P. 100901 https://doi.org/10.1063/5.0022271
26. LaMer V.K., Dinegar R.H. Theory, production and mechanism of formation of monodispersed hydrosols // J. Am. Chem. Soc. 1950. V. 72. № 11. P. 4847–4854. https://doi.org/10.1021/ja01167a001
27. Cölfen H., Antonietti M. Mesocrystals and nonclassical crystallization. Weinheim: Wiley-VCH Verlag, 2008. 276 p. https://doi.org/10.1002/9780470994603
28. Peng L., Dutta A., Xie R. et al. Dot–wire–platelet–cube: Step growth and structural transformations in CsPbBr3 perovskite nanocrystals // ACS Energy Lett. 2018. V. 3. № 8. P. 2014–2020. https://doi.org/10.1021/acsenergylett.8b01037
29. Su S., Tao J., Sun C. et al. Stable and highly efficient blue-emitting CsPbBr3 perovskite nanomaterials via kinetic-controlled growth // Chem. Eng. J. 2021. V. 419. P. 129612. https://doi.org/10.1016/j.cej.2021.129612
30. Guozhong Cao. Zero-dimensional nanostructures: Nanoparticles // World Scientific Series in Nanoscience and Nanotechnology. 2011. V. 2. P. 61–141.
31. Wang A., Yan X., Zhang M. et al. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process // Chem. Mater. American Chemical Society. 2016. V. 28. № 22. P. 8132–8140. https://doi.org/10.1021/acs. chemmater.6b01329
32. Leng M., Yang Y., Zeng K. et al. All-inorganic bismuthbased perovskite quantum dots with bright blue photoluminescence and excellent stability // Adv. Funct. Mater. 2018. V. 28. № 1. P. 1704446. https://doi.org/10.1002/adfm.201704446
33. Lee D.D.D., Kim M.H., Woo H.-Y.Y. et al. Heating-up synthesis of cesium bismuth bromide perovskite nanocrystals with tailored composition, morphology, and optical properties // RSC Adv. Royal Society of Chemistry. 2020. V. 10. № 12. P. 7126–7133. https://doi.org/10.1039/C9RA10106C
34. Protesescu L., Yakunin S., Bodnarchuk M.I. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut // Nano Lett. 2015. V. 15. № 6. P. 3692–3696. https://doi.org/10.1021/nl5048779
35. Veronese A., Patrini M., Bajoni D. et al. Highly tunable emission by halide engineering in lead-free perovskitederivative nanocrystals: The Cs2SnX6 (X = Cl, Br, Br/I, I) System // Front. Chem. 2020. V. 8. P. 35. https://doi.org/10.3389/fchem.2020.00035
36. Kim W., Koo B., Ko M.J. et al. Hot-injection synthesis of lead-free pseudo-alkali metal-based perovskite (TlSnX3) nanoparticles with tunable optical properties // Front. Mater. 2023. V. 10. P. 1–8. https://doi.org/10.3389/fmats.2023.1298188
37. Li D., Chen C.-S., Wu Y.-H. et al. Improving stability of cesium lead iodide perovskite nanocrystals by solution surface treatments // ACS Omega. 2020. V. 5. № 29. P. 18013–18020. https://doi.org/10.1021/acsomega.0c01403
38. Ghosh S., Nim G.K., Bansal P. et al. Investigating the property of water driven lead-free stable inorganic halide double perovskites // J. Colloid Interface Sci. 2021. V. 582. P. 1223–1230. https://doi.org/10.1016/j.jcis.2020.08.114

39. Bekenstein Y., Dahl J.C., Huang J. et al. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions // Nano Lett. 2018. V. 18. № 6. P. 3502–3508. https://doi.org/10.1021/acs.nanolett.8b00560
40. Yang P., Liu G., Liu B. et al. All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence // Chem. Commun. 2018. V. 54. № 82. P. 11638–11641. https://doi.org/10.1039/C8CC07118G
41. Kar M.R., Sahoo M.R., Nayak S.K. et al. Synthesis and properties of lead-free formamidinium bismuth bromide perovskites // Mater. Today Chem. 2021. V. 20. P. 100449. https://doi.org/10.1016/j.mtchem. 2021.100449
42. Leng M., Chen Z., Yang Y. et al. Lead-free, blue emitting bismuth halide perovskite quantum dots // Angew. Chemie Int. 2016. V. 55. № 48. P. 15012–15016. https://doi.org/10.1002/anie.201608160
43. Leng M., Yang Y., Chen Z. et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission // Nano Lett. 2018. V. 18. № 9. P. 6076–6083. https://doi.org/10.1021/acs. nanolett.8b03090
44. Huang H., Li Y., Tong Y. et al. Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: A versatile approach for their shapecontrolled synthesis // Angew. Chemie — Int. 2019. V. 58. № 46. P. 16558–16562. https://doi.org/10.1002/ anie.201906862
45. Fan Q., Biesold-McGee G. V., Ma J. et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties // Angewandte Chemie — International Edition. 2020. V. 59. № 3. P. 1030–1046. https://doi.org/10.1002/
anie.201904862
46. Zhang F., Zhong H., Chen C. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology // ACS Nano. American Chemical Society. 2015. V. 9. № 4. P. 4533–4542. https://doi.org/10.1021/acsnano.5b01154
47. Tsiwah E.A., Ding Y., Li Z. et al. One-pot scalable synthesis of all-inorganic perovskite nanocrystals with tunable morphology, composition and photoluminescence // Cryst Eng Comm. Royal Society of Chemistry. 2017. V. 19. № 46. P. 7041–7049. https://doi.org/ 10.1039/C7CE01749A
48. Van Embden J., Chesman A.S.R., Jasieniak J.J. The heat-up synthesis of colloidal nanocrystals // Chemistry of Materials. American Chemical Society. 2015. V. 27. № 7. V. 2246–2285. https://doi.org/10.1021/cm5028964
49. Liu Z., Yu Z., Li W., et al. Scalable one-step heating up synthesis of Cu2ZnSnS4 nanocrystals hole conducting materials for carbon electrode based perovskite solar cells // Sol. Energy. Elsevier Ltd. 2021. Т. 224. С. 51–57. https://doi.org/10.1016/j.solener.2021.05.089
50. Chigari Swapna Shambulinga, Vidyasagar C.C., Vishwanath C.C., Sanakousar Faniband M., Vinay Kumar B., Raghu A.V. Ultrasonic radiation assisted synthesis of (CH3NH3)2CuCl4, CH3NH3PbCl3, and CH3NH3SnCl3 perovskites for energy application // J. Hazard. Mater. Adv. 2023. V. 12. P. 100368. https://doi.org/10.1016/j.hazadv.2023.100368
51. Rao L., Tang Y., Song C. et al. Polar-solvent-free synthesis of highly photoluminescent and stable CsPbBr3 nanocrystals with controlled shape and size by ultrasonication // Chem. Mater. American Chemical Society. 2019. V. 31. № 2. P. 365–375. https://doi.org/10.1021/acs.chemmater.8b03298
52. Rao L., Ding X., Du X. et al. Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation // Beilstein J. Nanotechnol. 2019. V. 10. С. 666–676. https://doi.org/10.3762/bjnano.10.66
53. Tang X., Wen X., Yang F. Ultra-stable blue-emitting lead-free double perovskite Cs2SnCl6 nanocrystals enabled by an aqueous synthesis on a microfluidic platform // Nanoscale. 2022. V. 14. № 47. P. 17641–17653. https://doi.org/10.1039/D2NR05510D
54. Phillips T.W., Lignos I.G., Maceiczyk R.M. et al. Nanocrystal synthesis in microfluidic reactors: Where next? // Lab Chip. Royal Society of Chemistry. 2014. V. 14. № 17. P. 3172–3180. https://doi.org/10.1039/ c4lc00429a
55. Niu G., Ruditskiy A., Vara M. et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors // Chem. Soc.Rev. Royal Society of Chemistry. 2015. V. 44. № 16. P. 5806–5820. https://doi.org/10.1039/C5CS00049A
56. Mai H., Li X., Lu J. et al. Synthesis of Layered leadfree perovskite nanocrystals with precise size and shape control and their photocatalytic activity // J. Am. Chem. Soc. 2023. V. 145. № 31. P. 17337–17350. https://doi.org/10.1021/jacs.3c04890
57. Shen Y., Roberge A., Tan R. et al. Gel permeation chromatography as a multifunctional processor for nanocrystal purification and on-column ligand exchange chemistry // Chem. Sci. Royal Society of Chemistry. 2016. V. 7. № 9. P. 5671–5679. https://doi.org/10.1039/C6SC01301E
58. Lignos I., Maceiczyk R., DeMello A.J. Microfluidic technology: uncovering the mechanisms of nanocrystal nucleation and growth // Acc. Chem. Res. American Chemical Society. 2017. V. 50. № 5. P. 1248–1257. https://doi.org/10.1021/acs.accounts.7b00088
59. Sadeghi S., Bateni F., Kim T. et al. Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab // Nanoscale. 2024. V. 16. № 2. P. 580–591. https://doi.org/10.1039/D3NR05034C
60. Zhou L., Xu Y.F., Chen B.X. et al. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals // Small. 2018. V. 14. № 11. P. 1703762. https://doi.org/10.1002/smll.201703762
61. Liu G.-N., Zhao R.-Y., Xu B. et al. Design, synthesis, and photocatalytic application of moisture-stable hybrid lead-free perovskite // ACS Appl. Mater. Interfaces. 2020. V. 12. № 49. P. 54694–54702. https://doi.org/10.1021/acsami.0c16107
62. Wang A., Guo Y., Muhammad F. et al. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability // Chem. Mater. 2017. V. 29. № 15. P. 6493–6501. https://doi.org/10.1021/ acs.chemmater.7b02089
63. Cheng P., Sun L., Feng L. et al. Colloidal synthesis and optical properties of all inorganic low dimensional cesium copper halide nanocrystals // Angew. Chemie. 2019. V. 131. № 45. V. 16233–16237. https://doi.org/10.1002/ange.201909129
64. Han P., Mao X., Yang S. et al. Lead-free sodium–indium double perovskite Nanocrystals through doping silver cations for bright yellow emission // Angew.  Chemie. 2019. V. 131. № 48. P. 17391–17395. https://doi.org/10.1002/ange.201909525
65. Xu D., Wan Q., Wu S. et al. Enhancing the performance of LARP-synthesized CsPbBr3 nanocrystal LEDs by employing a dual hole injection layer // RSC Adv. Royal Society of Chemistry. 2020. V. 10. № 30. P. 17653–17659. https://doi.org/10.1039/D0RA02622K
66. Sun Q., Ye W., Wei J. et al. Lead-free perovskite Cs3Bi2Br9 heterojunctions for highly efficient and selective photocatalysis under mild conditions // J. Alloys Compd. 2022. V. 893. P. 162326. https://doi.org/10.1016/j.jallcom.2021.162326
67. Wang X., Shen Q., Chen Y. et al. Bright luminescence of Sb doping in all-inorganic zinc halide perovskite variant // J. Alloys Compd. 2022. V. 895. P. 162610. https://doi.org/10.1016/j.jallcom.2021.162610
68. Ba Q., Kim J., Im H. et al. Modulation of the optical bandgap and photoluminescence quantum yield in pnictogen (Sb3+/Bi3+)-doped organic–inorganic tin (IV) perovskite single crystals and nanocrystals //  J. Colloid Interface Sci. 2022. V. 606. P. 808–816. https://doi.org/10.1016/j.jcis.2021.08.083
69. Creutz S.E., Crites E.N., De Siena M.C. et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials // Nano Lett. American Chemical Society. 2018. V. 18. № 2. P. 1118–1123. https://doi.org/10.1021/acs.nanolett.7b04659
70. Yao M., Wang L., Yao J. et al. Improving lead-free double perovskite Cs2 NaBiCl6 nanocrystal optical properties via ion doping // Adv. Opt. Mater. 2020. V. 8. № 8. P. 1901919. https://doi.org/10.1002/adom.201901919
71. Wang X.-D., Miao N.-H., Liao J.-F., et al. The topdown synthesis of single-layered Cs4CuSb2Cl12 halide perovskite nanocrystals for photoelectrochemical application // Nanoscale. 2019. V. 11. № 12. P. 5180–5187. https://doi.org/10.1039/C9NR00375D
72. Zhou J., An K., He P. et al. Solution processed lead-free perovskite nanocrystal scintillators for high resolution X-ray CT imaging // Adv. Opt. Mater. 2021. V. 9. № 11. P. 2002144. https://doi.org/10.1002/adom.202002144
73. Hu Q., Niu G., Zheng Z. et al. Tunable сolor temperatures and efficient white emission from Cs2Ag1–xNaxIn1–yBiyCl6 double perovskite nanocrystals // Small. 2019. V. 15. № 44. P. 1903496. https://doi.org/10.1002/smll.201903496
74. Tran M.N., Cleveland I.J., Pustorino G.A. et al. Efficient near-infrared emission from lead-free ytterbiumdoped cesium bismuth halide perovskites // J. Mater. Chem. A. 2021. V. 9. № 22. P. 13026–13035. https://doi.org/10.1039/D1TA02147H
75. Kaiukov R., Almeida G., Marras S. et al. Cs3Cu4In2Cl13 nanocrystals: A perovskite-related structure with inorganic clusters at a sites // Inorg. Chem. 2020. V. 59. № 1. P. 548–554. https://doi.org/10.1021/acs.inorgchem.9b02834
76. Dai L., Deng Z., Auras F. et al. Slow carrier relaxation in tin-based perovskite nanocrystals // Nat. Photonics. 2021. V. 15. № 9. P. 696–702. https://doi.org/10.1038/s41566-021-00847-2
77. Levy S., Khalfin S., Pavlopoulos N.G. et al. The role silver nanoparticles plays in silver-based double-perovskite nanocrystals // Chem. Mater. 2021. V. 33. № 7. P. 2370–2377. https://doi.org/10.1021/acs.chemmater.0c04536
78. Abfalterer A., Shamsi J., Kubicki D.J. et al. Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals // ACS Ma-ter. Lett. 2020. V. 2. № 12. P. 1644–1652. https://doi.org/10.1021/acsmaterialslett.0c00393
79. Santhana V., Greenidge D.C., Thangaraju D. et al. Synthesis and emission characteristics of lead-free novel Cs4SnBr6/SiO2 nanocomposite // Mater. Lett. 2020. V. 280. P. 128562. https://doi.org/10.1016/j.matlet.2020.128562
80. Huang J., Lei T., Siron M. et al. Lead-free cesium europium halide perovskite nanocrystals // Nano Lett. 2020. V. 20. № 5. P. 3734–3739. https://doi.org/10.1021/acs.nanolett.0c00692
81. Han X., Liang J., Yang J. et al. Lead-free double perovskite Cs2SnX6: Facile solution synthesis and excellent stability // Small. 2019. V. 15. № 39. P. 1901650. https://doi.org/10.1002/smll.201901650
82. Hai Y., Huang W., Li Z. et al. Morphology regulation and photocatalytic CO2 reduction of lead-free perovskite Cs3Sb2I9 microcrystals // ACS Appl. Energy Mater. 2021. V. 4. № 6. P. 5913–5917. https://doi.org/10.1021/acsaem.1c00722
83. Grandhi G., Matuhina A., Liu M. et al. Lead-free cesium titanium bromide double perovskite nanocrystals // Nanomaterials. 2021. V. 11. № 6. P. 1458. https://doi.org/10.3390/nano11061458
84. Yang B., Chen J., Hong F. et al. Lead-free, air stable all inorganic cesium bismuth halide perovskite nanocrystals // Angew. Chemie Int. Ed. 2017. V. 56. № 41. P. 12471–12475. https://doi.org/10.1002/anie. 201704739
85. Peng K., Yu L., Min X., et al. The synthesis of leadfree double perovskite Cs2Ag0.4Na0.6InCl6 phosphor with improved optical properties via ion doping // J. Alloys Compd. 2022. V. 891. P. 161978. https://doi.org/10.1016/j.jallcom.2021.161978
86. Arfin H., Kaur J., Sheikh T. et al. Bi3+-Er3+ and Bi3+-Yb3+ codoped Cs2AgInCl6 double perovskite near-infrared emitters // Angew. Chemie — Int. 2020. V. 59. № 28. P. 11307–11311. https://doi.org/10.1002/anie.202002721
87. Qi Z., Fu X., Yang T. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications // Nano Res. 2019. V. 12. № 8. P. 1894–1899. https://doi.org/10.1007/s12274-019-2454-0
88. Wu X., Song W., Li Q. et al. Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam induced transformations // Chem. — An Asian J. 2018. V. 13. № 13. P. 1654–1659. https://doi.org/10.1002/asia.201800573
89. Zheng W., Sun R., Liu Y. et al. Excitation management of lead-free perovskite nanocrystals through doping // ACS Appl. Mater. Interfaces. 2021. V. 13. № 5. V. 6404–6410. https://doi.org/10.1021/acsami.0c20230
90. Liga S.M., Konstantatos G. Colloidal synthesis of leadfree Cs2TiBr6–xIx perovskite nanocrystals // J. Mater. Chem. C. 2021. V. 9. № 34. P. 11098–11103. https://doi.org/10.1039/D1TC01732B
91. Cai T., Shi W., Hwang S. et al. Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals // J. Am. Chem. Soc. 2020. V. 142. № 27. P. 11927–11936. https://doi.org/10.1021/jacs.0c04919
92. Wang L., Shi Z., Ma Z. et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h // Nano Lett. 2020. V. 20. № 5. P. 3568–3576. https://doi.org/10.1021/acs.nanolett.0c00513

93. Ma Z., Shi Z., Yang D. et al. Electrically-driven violet light-emitting devices based on highly stable leadfree perovskite Cs3Sb2Br9 quantum dots // ACS Energy Lett. 2020. V. 5. № 2. P. 385–394. https://doi.org/10.1021/acsenergylett.9b02096
94. Liu Y., Jing Y., Zhao J. et al. Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4% photoluminescence quantum yield // Chem. Mater. American Chemical Society. 2019. V. 31. № 9. P. 3333–3339. https://doi.org/10.1021/acs. chemmater.9b00410
95. Shankar H., Jha A., Kar P. Water-assisted synthesis of lead-free Cu based fluorescent halide perovskite nanostructures // Mater. Adv. 2022. V. 3. № 1. P. 658–664. https://doi.org/10.1039/D1MA00849H
96. Shen Y., Yin J., Cai B. et al. Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots // Nanoscale Horizons. 2020. V. 5. № 3. P. 580–585. https://doi.org/10.1039/ C9NH00685K
97. Ye W., He J., Cao Q. et al. Surfactant free, one step synthesis of lead-free perovskite hollow nanospheres for trace CO detection // Adv. Mater. 2021. V. 33. № 24. P. 2100674. https://doi.org/10.1002/adma. 202100674.
98. Sakai N., Haghighirad A.A., Filip M.R. et al. Solution-processed cesium hexabromopalladate (IV), Cs2PdBr6, for optoelectronic applications // J. Am. Chem. Soc. 2017. V. 139. № 17. P. 6030–6033. https://doi.org/10.1021/jacs.6b13258
99. Pal J., Manna S., Mondal A. et al. Colloidal synthesis and photophysics of M3Sb2I9 (M = Cs and Rb) nanocrystals: Lead-free perovskites // Angew. Chemie Int. 2017. V. 56. № 45. P. 14187–14191. https://doi.org/10.1002/anie.201709040
100. Zhang Y., Yin J., Parida M.R. et al. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals // J. Phys. Chem. Lett. 2017. V. 8. № 14. P. 3173–3177. https://doi.org/10.1021/acs.jpclett.7b01381
101. Liu S., Yang B., Chen J. et al. Efficient thermally activated delayed fluorescence from all inorganic cesium zirconium halide perovskite nanocrystals // Angew. Chemie Int. 2020. V. 59. № 49. P. 21925–21929. https://doi.org/10.1002/anie.202009101
102. Dahl J.C., Osowiecki W.T., Cai Y. et al. Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals // Chem. Mater. 2019. V. 31. № 9. P. 3134–3143. https://doi.org/10.1021/acs.chemmater.8b04202
103. Xie J.-L., Huang Z.-Q., Wang B. et al. New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability // Nanoscale. 2019. V. 11. № 14. P. 6719–6726. https://doi.org/10.1039/C9NR00600A
104. Timkina Y.A., Tuchin V.S., Litvin A.P. et al. Ytterbium-doped lead–halide perovskite nanocrystals: Synthesis, near-infrared emission, and open-source machine learning model for prediction of optical properties // Nanomaterials. 2023. V. 13. № 4. P. 744. https://doi.org/10.3390/nano13040744
105. Tuchin V.S., Stepanidenko E.A., Vedernikova A.A. et al. Optical properties prediction for red and near-infrared emitting carbon dots using machine learning // Small. 2024. First published 11 Feb. 2024. https://doi.org/10.1002/smll.202310402