УДК: 771.36
Увеличение углов обзора в дисплеях на основе жидких кристаллов. Обзор
Полный текст «Оптического журнала»
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
Пестов С.М., Томилин М.Г. Увеличение углов обзора в дисплеях на основе жидких кристаллов. Обзор // Оптический журнал. 2012. Т. 79. № 9. С. 66–80.
Pestov S. M., Tomilin M. G. Increasing the viewing angles in displays based on liquid crystals. Review [in English] // Opticheskii Zhurnal. 2012. V. 79. № 9. P. 66–80.
Обсуждены современные принципы построения дисплеев на основе жидких кристаллов, обеспечивающие получение изображений высокого контраста при больших углах обзора. Рассмотрены характеристики дисплеев на основе эффектов твист и супертвист, эффекта с поперечным приложением электрического поля, а также оптических компенсирующих пленок и мультидоменных вертикально ориентированных структур. Описаны дисплеи с управляемыми углами поля зрения.
угол обзора, контрастное отношение, супертвист, компенсирующие пленки, эффект с поперечным приложением электрического поля, вертикально ориентированная структура
Коды OCIS: 230.3720
Список источников:1. Yeh P., Gu C. Optics of liquid crystal displays. N.Y.: Wiley, 1999. 438 p.
2. Wu S.-T., Yang D.-K. Reflective liquid crystal displays. Chichester: Wiley, 2002. 335 p.
3. Yang D.-K., Wu S.-T. Fundamentals of liquid crystal devices. Chichester: Wiley, 2006. 387 p.
4. Томилин М.Г., Невская Г.Е. Фотоника жидких кристаллов. СПб.: Изд. Политехн. унив., 2011. 742 с.
5. Kim K.-H., Song J.-K. Technical evolution of liquid crystal displays // NPG Asia Mater. 2009. V. 1. № 1. P. 29–36.
6. Lien A., Takano H., Suzuki S., Uchida H. The symmetry property of a 90° twisted nematic liquid crystal cell // Mol. Cryst. Liq. Cryst. 1991. V. 198. P. 37–49.
7. Koden M. Wide viewing angle technologies of TFT-LCDs // Sharp Tech. J. 1999. V. 1. № 2. P. 1–6.
8. Hong Q., Wu T.X., Zhu X., Lu R., Wu S.-T. Extraordinarily high-contrast and wide-view liquid crystal displays // Appl. Phys. Lett. 2005. V. 86. Iss. 12. P. 121107-121107-3.
9. Haas G. Angular dependence of liquid crystal display // Eurodisplay. Berlin. 1999. P. 5–24.
10. Scheffer T.J., Nehring J. A new, highly multiplexable liquid crystal display // Appl. Phys. Lett. 1984. V. 45. № 10. P. 1021–1023.
11. Saitoh Y., Kimura S., Kusafuka K., Shimizu H. Optically compensated in-plane-switching mode TFT-LCD panel // SID Symposium Digest. 1998. V. 29. P. 706–709.
12. Fujimura Y., Nagatsuka T., Yoshimi H., Shimomura T. Optical properties of retardation films for STN-LCDs // SID Symposium Digest. 1991. V. 22. P. 739–742.
13. Wu S.T. Film-compensated homeotropic liquid crystal cell for direct view display // J. Appl. Phys. 1994. V. 76. P. 5975–5980.
14. Cheng S.Z.D., Li F., Savitski E.P., Harris F.W. Molecular design of aromatic polyimide films as uniaxial negative birefringent optical compensators in liquid crystal displays // Trends in Polymer Science. 1997. V. 5. P. 51–57.
15. Eblen J.P., Gunning W.I., Beedy J., Taber D., Hale L., Yeh P., Khoshnevisan. Birefringent compensators for normally white TN-LCDs // SID Symposium Digest. 1994. V. 25. P. 245–247.
16. Wu L.-H., Luo S.-J., Hsu C.-S., Wu S.-T. Obliquely tilted discotic phase compensation films // Jpn. J. Appl. Phys. 2000. V. 39. L869-L871.
17. Hasebe H., Takeuchi K., Takatsu H. Properties of novel UV-curable LCs and their retardation films // J. SID. 1995. V. 3. P. 139–143.
18. Wu S.-T. Design and fabrication of phase-matched compensation films for LCDs // SID Application Digest. 1996. V. 27. P. 21–24.
19. Mori H., Itoh Y., Nishlura Y., Nakamura T., Shinagawa Y. Novel optical compensation film for AMLCDs // SID Symposium Digest. 1997. V. 27. P. 941–944.
20. Ong H.L. Improvement of LCD viewing angles by negative birefringence compensation films // Mol. Cryst. Liq. Cryst. 1998. V. 320. P. 59–67.
21. Nair G.G., Rao D.S.S., Prasad S.K., Chandrasekhar S., Kumar S. Electrooptic and viewing angle characteristics of a display device employing a discotic nematic liquid crystal // Mol. Cryst. Liq. Cryst. 2003. V. 397. P. 245–252.
22. Inoue K., Kurita T., Yoda E., Kaminade T., Toyooka T., Kobori Y. Novel viewing angle compensation films for TN-LCDs using a hybrid aligned rod-like LC polymer // The V-th Int. Display Workshop. 1998. P. 255.
23. Toyooka T., Yoda E., Yamanashi T., Kobori Y. Viewing angle performance of TN-LCD with hybrid aligned nematic film // Displays. 1999. V. 20. № 5. P. 221–229.
24. Miyashita T., Miyazawa Y., Kikuchi H., Aoki H., Mawatari A. A multicolor wide-viewing angle STN-LCD with multiple retarding films // SID Symposium Digest. 1991. V. 22. P. 743–746.
25. Kondo S., Yamamoto T., Murayama A., Hatch H., Matsumoto S. A fast-response black and white STN-LCD with retarding film // SID Symposium Digest. 1991. V. 22. P. 747–749.
26. Vermeirsch K., De Meyere A., Fornier J., De Vleeschouwer H. Viewing angle of liquid crystal displays: representation on the Poincare sphere // Appl. Optics. 1999. V. 38. № 13. P. 2775–2786.
27. Soref R.A. Transverse field effects in nematic liquid crystals // Appl. Phys. Lett. 1973. V. 22. P. 165–166.
28. Kiefer R., Weber B., Windscheid F., Baur G. In-plane switching of nematic liquid crystals // Proc. Japan Displays’92. 1992. P. 547–550.
29. Sun Y., Ma H., Zhang Z. A super twisted nematic liquid crystal device based upon in-plane switching // Proc. SPIE. 2005. V. 5632. P. 267–274.
30. Sun Y., Ma H., Zhang Z. In-plane switching p-twist liquid crystal displays // Proc. SPIE. 2006. V. 6030. P. 60300K-1-8.
31. Oh-e M., Yoneya M., Kondo K. Switching of negative and positive dielectro-anisotropic liquid crystals by in-plane electric fields // J. Appl. Phys. 1997. V. 82. P. 528–535.
32. Lee S.H., Kim H.Y., Park I.C., Rho B.G., Park J.S., Park H.S., Lee C.H. Rubbing free, vertically aligned nematic liquid crystal display controlled by in-plane field // Appl. Phys. Lett. 1997. V. 71. P. 2851–2853.
33. Kim K.-H., Park S.-B., Shim J.-U., Souk J.-H., Chen J. New LCD modes for wide-viewing-angle applications // SID Symposium Digest. 1998. V. 29. P. 1085–1088.
34. Lyu J.-J., Sohn J., Kim H.Y., Lee S.H. Recent trends on patterned vertical alignment (PVA) and fringe-field switching (FFS) liquid crystal displays for liquid crystal television applications // J. Display Technol. 2007. V. 3. № 4. P. 404–412.
35. Yang G., Sun Y. A high-transmittance vertical alignment liquid crystal display using a fringe and in-plane electrical field // Liq. Cryst. 2011. V. 38. № 4. P. 469–473.
36. Lim Y.J., Jeong E., Kim Y.S., Jeong Y.H., Jang W.-G., Lee S.H. Viewing angle switching in fringe-field switching liquid crystal display // Mol. Cryst. Liq. Cryst. 2008. V. 495. P. 186–193.
37. Aratani S., Klausmann H., Oh-e M., Ohta M., Ashizawa K., Yanagawa K., Kondo K. Complete supression of color shift in in-plane switching mode liquid crystal display with a multidomain structure obtained by unidirectional rubbing // Jpn. J. Appl. Phys. 1997. V. 36. P. L27–L29.
38. Klausmann H., Aratani S., Kondo K. Optical characterization of the in-plane switching effect utilizing multidomain structures // J. Appl. Phys. 1998. V. 83. № 4. P. 1854–1862.
39. Nakayoshi Y., Kurahashi N., Tanno J., Nishimura E., Ogawa K., Suzuki M. High transmittance pixel design of in-plane switching TFT-LCDs for TVs // SID Symposium Digest. 2003. V. 34. P. 1100–1103.
40. Lee S.H., Lee S.L., Kim H.Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching // Appl. Phys. Lett. 1998. V. 73. № 20. P. 2881–2883.
41. Chen J., Kim K.-H., Jyu J.-J., Souk J.H., Kelly J.R., Bos P.J. Optimum film compensation modes for TN and VA LCDs // SID Symposium Digest. 1998. V. 29. P. 315–318.
42. Sigiyama T., Toko Y., Hashimoto T., Katoh K., Iimura Y., Kobayashi S. Analytical simulation of electrooptical performance of amorphous and super-multidomain TN-LCD // SID Symposium Digest. 1994. V. 25. P. 919–921.
43. Hird M., Goodby J.W., Toyne K.J. Nematic materials with negative dielectric anisotropy for display applications // Proc. SPIE. 2000. V. 3955. P. 15–23.
44. Pauluth D., Tarumi K. Optimization of liquid crystals for television // J. SID. 2005. V. 13. № 8. P. 693–702.
45. Kirsch P., Bremer M. Nematische Flüssigkristalle für Aktiv-Matrix-Displays: Design und Synthese // Angew. Chem. 2000. Bd. 112. S. 4384–4405.
46. Goodby J.W. The nanoscale engineering of nematic liquid crystals for displays // Liq. Cryst. 2011. V. 38. № 11–12. P. 1363–1387.
47. Takeda A., Kataoka S., Sasaki T., Chida H., Tsuda H., Ohmuro K., Sasabayashi T., Koike Y., Okamoto K. A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology // SID Symposium Digest. 1998. V. 29. P. 1077–1080.
48. Park S.B., Lyu J., Um Y., Do H., Ahn S., Choi K., Kim K-H., Kim S.S. A novel charge-shared S-PVA technology // SID Symposium Digest. 2007. V. 38. P. 1252–1254.
49. Huang Y.-P. Huang W.-K., Tsao C.-H., Su J.-J., Hou H-L., Lee C.-Y., Liao L., Chang T.-R., Lin Y.-C., Chen P.-L. Additional refresh technology (ART) of advanced-MVA (AMVA) mode for high quality LCDs // SID Symposium Digest. 2007. V. 38. P. 1010–1013.
50. Hicks S.E., Hurley S.P., Zola R.S., Yang D.-K. Polymer stabilized VA mode liquid crystal display // J. Display Technol. 2011. V. 7. № 11. P. 619–623.
51. Hong H. Analysis of the generation of multi-domain in vertical alignment (VA) mode caused by the fringe field on the side of the lower substrate // Liq. Cryst. 2011. V. 38. № 8. P. 1007–1015.
52. Takatoh K., Hasegawa M., Koden M., Itoh N., Hasegawa R., Sakamoto M. Alignment technologies and application of liquid crystal devices. N.Y.: Taylor & Francis. 2005. 263 p.
53. Van Ewyk R.L., O’Connor I., Mosley A., Cuddy A., Hilsum C., Blackburn C., Griffiths J., Jones F. Anisotropic fluorophors for LCDs // Display Technology and Applications. 1986. V. 7. № 4. P. 155–160.
54. Yamada N., Kozaki S., Funada F., Awane K. Axially symmetric aligned microcell mode // SID Symposium Digest. 1995. V. 26. P. 575–578.
55. Сухарьер А.С. Жидкокристаллические индикаторы. М.: Радио и связь. 1991. С. 173–174.
56. Томилин М.Г. Передовые дисплейные технологии // Оптический журнал. 2003. Т. 70. № 7. С. 4–17.
57. Hisatake Y., Kawata Y., Murayama A. Viewing angle controllable LCD using variable optical compensator and variable diffuser // SID Symposium Digest. 2005. V. 36. P. 1218–1221.
58. Gwag J.S., Lee Y.-J., Kim M.-E., Kim J.-H., Kim J. C., Yoon T.-H. Viewing angle control mode using nematic bistability // Optics Express. 2008. V. 16. № 4. P. 2663–2669.
59. Chen C.P., Jhun C.G., Yoon T.-H., Kim J.C. Optimal design of omni–directional viewing angle switching panel // Optics Express. 2007. V. 15. № 26. P. 17937–17947.
60. Lim Y.J., Jeong E., Kim Y.S., Rhee J.M., Lee G.-D., Lee S.H. Viewing angle switching in vertical alignment liquid crystal display by optimizing pixel structure and controlling LC orientation // SID Symposium Digest. 2007. V. 38. P. 756–759.
61. Самарин А. Технологии ЖК-дисплеев с управляемым углом обзора // Компоненты и технологии. 2008. № 8. С. 15–22.
62. Ong H., Woodard O., Cheong N., Reese C. A new normally black, high contrast, wide symmetrical viewing angle AMLCD for military head mounted displays (HMDs) and other viewer applications // Proc. SPIE. 2004. V. 5442. P. 301–312.
63. Woodard O., Lo J., Khandaker M., Gassel J., Herrmann F., Ong H., Tsaur B.Y., Reese C. A full-color SXGA TN AMLCD for military head-mounted displays and viewer applications // Proc. SPIE. 2008. V. 6955. P. 69550B-01-10.