ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

УДК: 771.36

Увеличение углов обзора в дисплеях на основе жидких кристаллов. Обзор

Ссылка для цитирования:

Пестов С.М., Томилин М.Г. Увеличение углов обзора в дисплеях на основе жидких кристаллов. Обзор // Оптический журнал. 2012. Т. 79. № 9. С. 66–80.

    

Pestov S. M., Tomilin M. G. Increasing the viewing angles in displays based on liquid crystals. Review [in English] // Opticheskii Zhurnal. 2012. V. 79. № 9. P. 66–80.

Ссылка на англоязычную версию:
S. M. Pestov and M. G. Tomilin, "Increasing the viewing angles in displays based on liquid crystals. ReviewThis review uses some materials of an invited report delivered at the International Conference in Calcutta on “Trends in Optics and Photonics,” 12/7–9/2011." Journal of Optical Technology. 79(9), 576-587 (2012). https://doi.org/10.1364/JOT.79.000576
Аннотация:

Обсуждены современные принципы построения дисплеев на основе жидких кристаллов, обеспечивающие получение изображений высокого контраста при больших углах обзора. Рассмотрены характеристики дисплеев на основе эффектов твист и супертвист, эффекта с поперечным приложением электрического поля, а также оптических компенсирующих пленок и мультидоменных вертикально ориентированных структур. Описаны дисплеи с управляемыми углами поля зрения.

Ключевые слова:

угол обзора, контрастное отношение, супертвист, компенсирующие пленки, эффект с поперечным приложением электрического поля, вертикально ориентированная структура

Коды OCIS: 230.3720

Список источников:

1. Yeh P., Gu C. Optics of liquid crystal displays. N.Y.: Wiley, 1999. 438 p.
2. Wu S.-T., Yang D.-K. Reflective liquid crystal displays. Chichester: Wiley, 2002. 335 p.
3. Yang D.-K., Wu S.-T. Fundamentals of liquid crystal devices. Chichester: Wiley, 2006. 387 p.
4. Томилин М.Г., Невская Г.Е. Фотоника жидких кристаллов. СПб.: Изд. Политехн. унив., 2011. 742 с.
5. Kim K.-H., Song J.-K. Technical evolution of liquid crystal displays // NPG Asia Mater. 2009. V. 1. № 1. P. 29–36.
6. Lien A., Takano H., Suzuki S., Uchida H. The symmetry property of a 90° twisted nematic liquid crystal cell // Mol. Cryst. Liq. Cryst. 1991. V. 198. P. 37–49.
7. Koden M. Wide viewing angle technologies of TFT-LCDs // Sharp Tech. J. 1999. V. 1. № 2. P. 1–6.
8. Hong Q., Wu T.X., Zhu X., Lu R., Wu S.-T. Extraordinarily high-contrast and wide-view liquid crystal displays // Appl. Phys. Lett. 2005. V. 86. Iss. 12. P. 121107-121107-3.
9. Haas G. Angular dependence of liquid crystal display // Eurodisplay. Berlin. 1999. P. 5–24.
10. Scheffer T.J., Nehring J. A new, highly multiplexable liquid crystal display // Appl. Phys. Lett. 1984. V. 45. № 10. P. 1021–1023.

11. Saitoh Y., Kimura S., Kusafuka K., Shimizu H. Optically compensated in-plane-switching mode TFT-LCD panel // SID Symposium Digest. 1998. V. 29. P. 706–709.
12. Fujimura Y., Nagatsuka T., Yoshimi H., Shimomura T. Optical properties of retardation films for STN-LCDs // SID Symposium Digest. 1991. V. 22. P. 739–742.
13. Wu S.T. Film-compensated homeotropic liquid crystal cell for direct view display // J. Appl. Phys. 1994. V. 76. P. 5975–5980.
14. Cheng S.Z.D., Li F., Savitski E.P., Harris F.W. Molecular design of aromatic polyimide films as uniaxial negative birefringent optical compensators in liquid crystal displays // Trends in Polymer Science. 1997. V. 5. P. 51–57.
15. Eblen J.P., Gunning W.I., Beedy J., Taber D., Hale L., Yeh P., Khoshnevisan. Birefringent compensators for normally white TN-LCDs // SID Symposium Digest. 1994. V. 25. P. 245–247.
16. Wu L.-H., Luo S.-J., Hsu C.-S., Wu S.-T. Obliquely tilted discotic phase compensation films // Jpn. J. Appl. Phys. 2000. V. 39. L869-L871.
17. Hasebe H., Takeuchi K., Takatsu H. Properties of novel UV-curable LCs and their retardation films // J. SID. 1995. V. 3. P. 139–143.
18. Wu S.-T. Design and fabrication of phase-matched compensation films for LCDs // SID Application Digest. 1996. V. 27. P. 21–24.
19. Mori H., Itoh Y., Nishlura Y., Nakamura T., Shinagawa Y. Novel optical compensation film for AMLCDs // SID Symposium Digest. 1997. V. 27. P. 941–944.
20. Ong H.L. Improvement of LCD viewing angles by negative birefringence compensation films // Mol. Cryst. Liq. Cryst. 1998. V. 320. P. 59–67.
21. Nair G.G., Rao D.S.S., Prasad S.K., Chandrasekhar S., Kumar S. Electrooptic and viewing angle characteristics of a display device employing a discotic nematic liquid crystal // Mol. Cryst. Liq. Cryst. 2003. V. 397. P. 245–252.
22. Inoue K., Kurita T., Yoda E., Kaminade T., Toyooka T., Kobori Y. Novel viewing angle compensation films for TN-LCDs using a hybrid aligned rod-like LC polymer // The V-th Int. Display Workshop. 1998. P. 255.
23. Toyooka T., Yoda E., Yamanashi T., Kobori Y. Viewing angle performance of TN-LCD with hybrid aligned nematic film // Displays. 1999. V. 20. № 5. P. 221–229.
24. Miyashita T., Miyazawa Y., Kikuchi H., Aoki H., Mawatari A. A multicolor wide-viewing angle STN-LCD with multiple retarding films // SID Symposium Digest. 1991. V. 22. P. 743–746.
25. Kondo S., Yamamoto T., Murayama A., Hatch H., Matsumoto S. A fast-response black and white STN-LCD with retarding film // SID Symposium Digest. 1991. V. 22. P. 747–749.
26. Vermeirsch K., De Meyere A., Fornier J., De Vleeschouwer H. Viewing angle of liquid crystal displays: representation on the Poincare sphere // Appl. Optics. 1999. V. 38. № 13. P. 2775–2786.
27. Soref R.A. Transverse field effects in nematic liquid crystals // Appl. Phys. Lett. 1973. V. 22. P. 165–166.
28. Kiefer R., Weber B., Windscheid F., Baur G. In-plane switching of nematic liquid crystals // Proc. Japan Displays’92. 1992. P. 547–550.
29. Sun Y., Ma H., Zhang Z. A super twisted nematic liquid crystal device based upon in-plane switching // Proc. SPIE. 2005. V. 5632. P. 267–274.
30. Sun Y., Ma H., Zhang Z. In-plane switching p-twist liquid crystal displays // Proc. SPIE. 2006. V. 6030. P. 60300K-1-8.
31. Oh-e M., Yoneya M., Kondo K. Switching of negative and positive dielectro-anisotropic liquid crystals by in-plane electric fields // J. Appl. Phys. 1997. V. 82. P. 528–535.
32. Lee S.H., Kim H.Y., Park I.C., Rho B.G., Park J.S., Park H.S., Lee C.H. Rubbing free, vertically aligned nematic liquid crystal display controlled by in-plane field // Appl. Phys. Lett. 1997. V. 71. P. 2851–2853.
33. Kim K.-H., Park S.-B., Shim J.-U., Souk J.-H., Chen J. New LCD modes for wide-viewing-angle applications // SID Symposium Digest. 1998. V. 29. P. 1085–1088.
34. Lyu J.-J., Sohn J., Kim H.Y., Lee S.H. Recent trends on patterned vertical alignment (PVA) and fringe-field switching (FFS) liquid crystal displays for liquid crystal television applications // J. Display Technol. 2007. V. 3. № 4. P. 404–412.
35. Yang G., Sun Y. A high-transmittance vertical alignment liquid crystal display using a fringe and in-plane electrical field // Liq. Cryst. 2011. V. 38. № 4. P. 469–473.
36. Lim Y.J., Jeong E., Kim Y.S., Jeong Y.H., Jang W.-G., Lee S.H. Viewing angle switching in fringe-field switching liquid crystal display // Mol. Cryst. Liq. Cryst. 2008. V. 495. P. 186–193.
37. Aratani S., Klausmann H., Oh-e M., Ohta M., Ashizawa K., Yanagawa K., Kondo K. Complete supression of color shift in in-plane switching mode liquid crystal display with a multidomain structure obtained by unidirectional rubbing // Jpn. J. Appl. Phys. 1997. V. 36. P. L27–L29.

38. Klausmann H., Aratani S., Kondo K. Optical characterization of the in-plane switching effect utilizing multidomain structures // J. Appl. Phys. 1998. V. 83. № 4. P. 1854–1862.
39. Nakayoshi Y., Kurahashi N., Tanno J., Nishimura E., Ogawa K., Suzuki M. High transmittance pixel design of in-plane switching TFT-LCDs for TVs // SID Symposium Digest. 2003. V. 34. P. 1100–1103.
40. Lee S.H., Lee S.L., Kim H.Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching // Appl. Phys. Lett. 1998. V. 73. № 20. P. 2881–2883.
41. Chen J., Kim K.-H., Jyu J.-J., Souk J.H., Kelly J.R., Bos P.J. Optimum film compensation modes for TN and VA LCDs // SID Symposium Digest. 1998. V. 29. P. 315–318.
42. Sigiyama T., Toko Y., Hashimoto T., Katoh K., Iimura Y., Kobayashi S. Analytical simulation of electrooptical performance of amorphous and super-multidomain TN-LCD // SID Symposium Digest. 1994. V. 25. P. 919–921.
43. Hird M., Goodby J.W., Toyne K.J. Nematic materials with negative dielectric anisotropy for display applications // Proc. SPIE. 2000. V. 3955. P. 15–23.
44. Pauluth D., Tarumi K. Optimization of liquid crystals for television // J. SID. 2005. V. 13. № 8. P. 693–702.
45. Kirsch P., Bremer M. Nematische Flüssigkristalle für Aktiv-Matrix-Displays: Design und Synthese // Angew. Chem. 2000. Bd. 112. S. 4384–4405.
46. Goodby J.W. The nanoscale engineering of nematic liquid crystals for displays // Liq. Cryst. 2011. V. 38. № 11–12. P. 1363–1387.
47. Takeda A., Kataoka S., Sasaki T., Chida H., Tsuda H., Ohmuro K., Sasabayashi T., Koike Y., Okamoto K. A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology // SID Symposium Digest. 1998. V. 29. P. 1077–1080.
48. Park S.B., Lyu J., Um Y., Do H., Ahn S., Choi K., Kim K-H., Kim S.S. A novel charge-shared S-PVA technology // SID Symposium Digest. 2007. V. 38. P. 1252–1254.
49. Huang Y.-P. Huang W.-K., Tsao C.-H., Su J.-J., Hou H-L., Lee C.-Y., Liao L., Chang T.-R., Lin Y.-C., Chen P.-L. Additional refresh technology (ART) of advanced-MVA (AMVA) mode for high quality LCDs // SID Symposium Digest. 2007. V. 38. P. 1010–1013.
50. Hicks S.E., Hurley S.P., Zola R.S., Yang D.-K. Polymer stabilized VA mode liquid crystal display // J. Display Technol. 2011. V. 7. № 11. P. 619–623.
51. Hong H. Analysis of the generation of multi-domain in vertical alignment (VA) mode caused by the fringe field on the side of the lower substrate // Liq. Cryst. 2011. V. 38. № 8. P. 1007–1015.

52. Takatoh K., Hasegawa M., Koden M., Itoh N., Hasegawa R., Sakamoto M. Alignment technologies and application of liquid crystal devices. N.Y.: Taylor & Francis. 2005. 263 p.
53. Van Ewyk R.L., O’Connor I., Mosley A., Cuddy A., Hilsum C., Blackburn C., Griffiths J., Jones F. Anisotropic fluorophors for LCDs // Display Technology and Applications. 1986. V. 7. № 4. P. 155–160.
54. Yamada N., Kozaki S., Funada F., Awane K. Axially symmetric aligned microcell mode // SID Symposium Digest. 1995. V. 26. P. 575–578.
55. Сухарьер А.С. Жидкокристаллические индикаторы. М.: Радио и связь. 1991. С. 173–174.
56. Томилин М.Г. Передовые дисплейные технологии // Оптический журнал. 2003. Т. 70. № 7. С. 4–17.
57. Hisatake Y., Kawata Y., Murayama A. Viewing angle controllable LCD using variable optical compensator and variable diffuser // SID Symposium Digest. 2005. V. 36. P. 1218–1221.
58. Gwag J.S., Lee Y.-J., Kim M.-E., Kim J.-H., Kim J. C., Yoon T.-H. Viewing angle control mode using nematic bistability // Optics Express. 2008. V. 16. № 4. P. 2663–2669.
59. Chen C.P., Jhun C.G., Yoon T.-H., Kim J.C. Optimal design of omni–directional viewing angle switching panel // Optics Express. 2007. V. 15. № 26. P. 17937–17947.
60. Lim Y.J., Jeong E., Kim Y.S., Rhee J.M., Lee G.-D., Lee S.H. Viewing angle switching in vertical alignment liquid crystal display by optimizing pixel structure and controlling LC orientation // SID Symposium Digest. 2007. V. 38. P. 756–759.
61. Самарин А. Технологии ЖК-дисплеев с управляемым углом обзора // Компоненты и технологии. 2008. № 8. С. 15–22.
62. Ong H., Woodard O., Cheong N., Reese C. A new normally black, high contrast, wide symmetrical viewing angle AMLCD for military head mounted displays (HMDs) and other viewer applications // Proc. SPIE. 2004. V. 5442. P. 301–312.
63. Woodard O., Lo J., Khandaker M., Gassel J., Herrmann F., Ong H., Tsaur B.Y., Reese C. A full-color SXGA TN AMLCD for military head-mounted displays and viewer applications // Proc. SPIE. 2008. V. 6955. P. 69550B-01-10.