ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

DOI: 10.17586/1023-5086-2019-86-10-08-14

УДК: 538.958, 54-78, 535.372

Влияние гамма-облучения на фотолюминесценцию полимерного композита MEH-PPV/детонационный наноалмаз

Ссылка для цитирования:

Романов Н.М., Шахов Ф.М., Осипов В.Ю., Мусихин С.Ф. Влияние гамма-облучения на фотолюминесценцию полимерного композита MEH-PPV/детонационный наноалмаз // Оптический журнал. 2019. Т. 86. № 10. С. 8–14. http://doi.org/10.17586/1023-5086-2019-86-10-08-14

 

Romanov N.M., Shakhov F.M., Osipov V.Yu., Musikhin S.F. Effect of gamma irradiation on photoluminescence of MEH-PPV/detonation nanodiamond polymer composite [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 10. P. 8–14. http://doi.org/10.17586/1023-5086-2019-86-10-08-14

Ссылка на англоязычную версию:

N. M. Romanov, F. M. Shakhov, V. Yu. Osipov, and C. F. Musikhin, "Effect of gamma irradiation on photoluminescence of MEH-PPV/detonation nanodiamond polymer composite," Journal of Optical Technology. 86(10), 608-613 (2019). https://doi.org/10.1364/JOT.86.000608

Аннотация:

Исследована фотолюминесценция плёнок полимера MEH-PPV и нанокомпозита MEH-PPV/ДНА после воздействия гамма-облучения от радиоизотопного источника цезий-137 с дозами 0,5−12,2 кГр по H2O и релаксационные процессы в них после облучения максимальной дозой. Воздействие гамма-облучения приводит к образованию новых структурных единиц в MEH-PPV/ДНА, схожих по своему строению со структурными единицами проводящего полимера PPV. Предложена микроскопическая модель, описывающая эволюцию фотолюминесценции MEH-PPV/ДНА в рамках образования связей между алифатическими радикалами полимеров и поверхностью детонационного алмаза.

Ключевые слова:

нанокомпозиты, проводящие полимеры, детонационные наноалмазы, гамма-облучение, фотолюминесценция, MEH-PPV

Коды OCIS: 300.2530, 160.4236, 160.4890, 160.6000, 160.5470

Список источников:

1. Nimith K.M., Satyanarayan M.N., Umesh G. Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications // Opt. Mater. 2018. V. 80. P. 143–148.
2. Musikhin S., Bakueva L., Sargent E.H., Shik A. Luminescent properties and electronic structure of conjugated polymer-dielectric nanocrystal composites // J. Appl. Phys. 2002. V. 91. № 10. P. 6679–6683.
3. Dang M.T., Hirsch L., Wantz G. P3HT:PCBM, best seller in polymer photovoltaic research // Adv. Mater. 2011. V. 23. № 31. P. 3597–3602.
4. Lin Y., Zhan X. Non-fullerene acceptors for organic photovoltaics: an emerging horizon // Mater. Horiz. 2014. V. 5. № 1. P. 463–470.
5. Ren S., Bernardi M., Lunt R.R., Bulovic V., Grossman J.C., Gradečak S. Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties // Nano Lett. 2011. V. 11. № 12. P. 5316–5321.
6. Stylianakis M.M., Stratakis E., Koudoumas E., Kymakis E., Anastasiadis S.H. O rganic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites // ACS Appl. Mater. Interfaces. 2012. V. 4. № 9. P. 4864–4870.
7. Feng L., Wang F., Niu M.-S., Zheng F., Bi P.-Q., Yang X.-Y., Xu W.-L., Hao X.-T. Structural and optical properties of conjugated polymer and carbon-based non-fullerene material blend films for photovoltaic applications // 2017Optical Materials Express. 2017. V. 7. № 3. P. 687–697.
8. Xu W.-L., Zheng F., Yang X.-Y., Jin H.D., Feng L., Hao X.-T. Charge transfer dynamics in poly(3-hexylthiophene): nanodiamond blend films // Diamond Relat. Mater. 2016. V. 64. P. 8–12.
9. Kausar A., Ashraf R., Siddiq M. Polymer/nanodiamond composites in Li-ion batteries: a review // Polymer-Plastics Technology and Engineering. 2014. V. 53. P. 550–563.
10. Kovalenko I., Bucknall D.G., Yushin G. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors // Adv. Funct. Mater. 2010. V. 20. P. 3979–3986.
11. Gomez H., Ram M.K., Alvi F., Stefanakos E., Kumar A. Novel synthesis, characterization, and corrosion inhibition properties of nanodiamond-polyaniline films // J. Phys. Chem. C. 2010. V. 114. P. 18797–18804.
12. Tamburri E., Orlanducci S., Guglielmotti V., Reina G., Rossi M., Terranova M.L. Engineering detonation nanodiamond — Polyaniline composites by electrochemical routes: Structural features and functional characterizations // Polymer. 2011. V. 52. P. 5001–5008.
13. Peters M., Seneca S. Hellings N., Junkers T., Ethirajan A. Size-dependent properties of functional PPV-based conjugated polymer nanoparticles for bioimaging // Colloids and Surfaces B: Biointerfaces. 2018. V. 169. P. 494–501.
14. Danilenko V.V. On the history of the discovery of nanodiamond synthesis // Phys. Solid State. 2004. V. 46. № 4. P. 595–599.
15. Romanov N.M., Osipov V.Yu., Takai K., Touhara H., Hattori Y. Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond // J. Opt. Tech. 2007. V. 84. № 10. P. 654–657.
16. Lau X.C., Desai C., Mitra S. Functionalized nanodiamond as a charge transporter inorganic solar cells // Sol. Energy. 2013. V. 91. P. 204–211.

17. Mochalin V.N., Gogotsi Y. Nanodiamond–polymer composites // Diamond Relat. Mater. 2015. V. 58. P. 161–171.
18. Sariciftci N.S., Braun D., Zhang C., Srdanov V.I., Heeger A.J., Stucky G., Wudl F. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells // Appl. Phys. Lett. 1993. V. 62. P. 585–587.
19. Romanov N.M., Musikhin S.F. Effect of gamma radiation on the luminescence of nanocomposites of MEH-PPV conductive polymer and PbS quantum dots // St. Petersburg State Polytechnical University J. Phys. Math. 2018. V. 11. № 2. P. 41–48.
20. Jin H., Hou Y., Meng X., Li Y., Shi Q., Teng F. Enhanced photovoltaic properties of polymer–fullerene bulk heterojunction solar cells by thermal annealing // Solid State Comm. 2007. V. 142. № 3. P. 181–184.
21. AlSalhi M.S., Prasad S., Devaraj D., Mustafa Z.S.A. Gamma-irradiation effects on the spectral and amplified spontaneous emission (ASE) properties of conjugated polymers in solution // Polymers. 2017. V. 9. № 1. P. 1–14.
22. Bronze-Uhle E.S., Batagin-Neto A., Lavarda F.C., Graeff C.F.O. Ionizing radiation induced degradation of poly (2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylene vinylene) in solution // J. Appl. Phys. 2011. V. 110. № 073510. P. 1–9.
23. Nouh S.A., Elfadl A.A., Benthami K. Gamma-induced changes in some of the structural and optical properties of Makrofol polycarbonate/silver nanocomposites films // Radiation Effects and Defects in Solids. 2017. V. 172. № 1–2. P. 48–60.
24. Puišo J., Adlienė D., Guobiene A ., Prosycevas I., Plaipaite-Nalivaiko R. Modification of Ag–PVP nanocomposites by gamma irradiation // Mater. Sci. Eng. B. 2011. V. 176. P. 1562–1567.
25. Graham S.C., Friend R.H., Fung S., Moratti S.C. The effect of X-ray irradiation on poly(p-phenylene vinylene) and derivatives // Synthetic Metals. 1997. V. 84. № 1–3. P. 903–904.
26. Lee K.W., Mo K.H., Jang J.W., Lee C.E. Proton-irradiation effect on the luminescence of the MEH–PPV conjugated polymer // Solid State Communications. 2007. V. 141. P. 57–60.
27. Lee H., Vak D., Baeg K.J., Nah Y.C., Kim D.Y., Noh Y.Y. Synthesis of poly(p-phenylene-vinylene) derivatives containing an oxadiazole pendant group and their applications to organic electronic devices // J Nanosci Nanotechnol. 2013. V. 13. № 5. P. 3321–30.
28. Osipov V.Yu., Romanov N.M. Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions // J. Opt. Tech. 2017. V. 84. № 5. P. 285–288.
29. Shakhov F.M., Abyzov A.M., Takai K. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature // J. Solid State Chem. 2017. V. 256. P. 72–92.
30. Romanov N.M., Zakharova I.B., Malova M.M., Elistratova M.A., Musikhin S.F. Effect of gamma radiation on the thin nanocomposite MEH-PPV/C60 films // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2018. V. 11. № 4. P. 22–32.
31. Ibnaouf K.H. Excimer state of a conjugated polymer (MEH-PPV) in thin films // Optics & Laser Technology. 2013. V. 48. P. 401–404.
32. Bronze-Uhle E.S., Borin J.F., Batagin-Neto A., Alves M.C.O., Graeff C.F.O. MEH-PPV hypsochromic shifts in halogenated solvents induced by γ-rays // Materials Chemistry and Physics. 2012. V. 132. P. 846–851.
33. Bazani D.L.M., Lima J.P.H., Andrade A.M. MEH-PPV thin films for radiation sensor applications // EEE SENSORS JOURNAL. 2009. V. 9. № 7. P. 748–751.
34. Tidjani A., Watanabe Y. Gamma-oxidation of linear low-density polyethylene: the dose- rate effect of irradiation on chemical and physical modifications // J. Polymer Sci. Part A: Polymer Chem. 1995. V. 33. P. 1455–1460.
35. Aarya S.S., Dev K., Raghuvanshi S.K., Krishna J.B.M., Wahab M.A. Effect of gamma radiation on the structural and optical properties of polyethyleneterephthalate (PET) polymer // Radiation Phys. and Chem. 2012. V. 81. P. 458–462.
36. Baranovskii S.D., Rubel O., Jansson F., Österbacka R. Description of charge transport in disordered organic materials // Organic Electronics. Advances in Polymer Science. 2009. V. 223. P. 1–28.
37. Blanksby S.J., Ellison G.B. Bond dissociation energies of organic molecules // Accounts of Chemical Research. 2003. V. 36. № 4. P. 255–263.