DOI: 10.17586/1023-5086-2023-90-02-68-77
УДК: 535.212
Математическое моделирование характеристик электрооптического модулятора в конфигурации интерферометра Маха–Цендера на основе тонких плёнок ниобата лития
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
I. V. Kuznetsov and A. S. Perin, "Mathematical modeling of the parameters of an electro-optic modulator in the Mach–Zehnder interferometer configuration based on thin lithium niobate films," Journal of Optical Technology. 90(2), 93-97 (2023). https://doi.org/10.1364/JOT.90.000093
интерферометр Маха–Цендера, электрооптических эффект, тонкие плёнки ниобата лития, гребенчатый волновод, электрооптический модулятор, сенсор электрического поля
Коды OCIS: 230.2090, 310.0310, 230.4110, 130.0250
Список источников:1. Jung H. An integrated photonic electric-field sensor utilizing a 1ґ2 YBB Mach–Zehnder interferometric modulator with a titanium-diffused lithium niobate waveguide and a dipole patch antenna // Crystals. 2019. V. 9. № 9. P. 459. https:doi.org/10.3390/cryst9090459
2. Dybov V.A., Serikov D.V., Ryzhkova G.S. Growth and substructure of lithium niobate films // Condensed media and interfaces. 2019. V. 21. № 1. P. 51–59. https:doi.org/10.17308/kcmf.2019.21/716
3. Soham Saha, Siew Shawn Yohanes, Deng Jun, Aaron Danner, Mankei Tsang. Fabrication and characterization of optical devices on lithium niobate on insulator chips // Procedia Engineering. 2016. V. 140. P. 183–186. https:doi.org/10.1016/j.proeng.2016.07.343
4. Wang Y., Chen Z., Hu H. Analysis of waveguides on lithium niobate thin films // Crystals. 2018. V. 8. № 5. P. 191. https:doi.org/10.3390/cryst8050191
5. Xiaobo Xie, Khurgin J., Kang J., Chow F. Linearized Mach–Zehnder intensity modulator // IEEE Photonics Technology Letters. 2003. V. 15. № 4. P. 531–533. https:doi.org/10.1109/LPT.2003.809323
6. Nikolajsen T., Leosson K., Bozhevolnyi S.I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths // Applied Physics Letters. 2004. V. 85. № 24. P. 5833–5835. https:doi.org/10.1063/1.1835997
7. Petraru A., Schubert J., Schmid M., Trithaveesak O., Buchal Ch.. Integrated optical Mach–Zehnder modulator based on polycrystalline BaTiO3 // Optics letters. 2003. V. 28. № 24. P. 2527–2529. https:doi.org/10.1364/OL.28.002527
8. Ran Hao, Wei Du, Hongsheng Chen, Xiaofeng Jin, Longzhi Yang, Erping Li. Ultra-compact optical modulator by graphene induced electro-refraction effect // Applied Physics Letters. 2013. V. 103. № 6. P. 061116. https:doi.org/10.1063/1.4818457
9. Singh G., Yadav R. P., Janyani V. Ti indiffused lithium niobate (Ti: LiNbO3) Mach–Zehnder interferometer all optical switches: a review // New Advanced Technologies. 2010. https:doi.org/10.5772/9422
10. Wang, C., Zhang, M., Chen, X., Bertrand M., Shams-Ansari A., Sethumadhavan Ch, Winzer P., Lončar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages // Nature. 2018. V. 562. № 7725. P. 101–104. https:doi.org/10.1038/s41586-018-0551-y
11. Samra A., Yousif B.B. Beam propagation method based on fast Fourier transform and finite difference schemes and its application to optical diffraction grating. (Dept. E) // MEJ. Mansoura Engineering Journal. 2020. V. 31. № 1. P. 67–81. https:doi.org/10.21608/bfemu.2020.129254
12. Devi P., Maddila R.K. Modeling of lithium niobate based Mach–Zehnder modulator for visible light communication system with BER analysis // Optical and Quantum Electronics. 2021. V. 53. № 6. P. 1–15. https:doi.org/10.1007/s11082-021-02999-5
13. Singh G., Janyani V., Yadav R.P. Modeling of a 2ґ2 electro-optic Mach–Zehnder interferometer optical switch with s-bend arms // Photonics letters of Poland. 2011. V. 3. № 3. P. 119–121. https:doi.org/10.4302/plp.2011.3.10
14. Van Roey J., Van der Donk J., Lagasse P.E. Beam-propagation method: analysis and assessment // Josa. 1981. V. 71. № 7. P. 803–810. https:doi.org/10.1364/JOSA.71.000803
15. Кузнецов И.В., Алтухов В.А., Емельянов Д.В., Перин А.С. Исследование влияния угла Y-делителя на оптические потери при распространении света в гребенчатых волноводах на основе тонких плёнок ниобата лития // Сборник избранных статей научной сессии ТУСУР (Томск. 18–20 мая 2022 г.): в 3 ч. Томск: В-Спектр, 2022. Ч. 1. С. 145–148.
16. Smith D.S., Riccius H.D., Edwin R.P. Refractive indices of lithium niobate // Optics communications. 1976. V. 17. № 3. P. 332–335. https:doi.org/10.1016/0030-4018(76)90273-X
17. Turner E.H. High-frequency electro-optic coefficients of lithium niobate // Applied Physics Letters. 1966. V. 8. № 11. P. 303–304. https:doi.org/10.1063/1.1754449
18. Manoochehri O., Darvazehban A., Salari M.A., Khaledian S., Erricolo D., Smida B. A dual-polarized biconical antenna for direction finding applications from 2 to 18 GHz // Microwave and Optical Technology Letters. 2018. V. 60. № 6. P. 1552–1558. https:doi.org/10.1002/mop.31195
19. Weis R.S., Gaylord T.K. Lithium Niobate: Summary of physical properties and crystal structure // Applied Physics A. 1985. V. 37. № 4. P. 191–203. https:doi.org/10.1007/BF00614817