DOI: 10.17586/1023-5086-2024-91-05-72-84
УДК: 535.373.2, 53.082.56
Фотофизика генерации синглетного кислорода в пленках хитозана с экстрактом плодов калины (Viburnum opulus L.) под влиянием плазмонов на модифицированной поверхности титана
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
Цибульникова А.В., Землякова Е.С., Слежкин В.А., Самусев И.Г., Лятун И.И., Артамонов Д.А., Зюбин А.Ю., Брюханов В.В. Фотофизика генерации синглетного кислорода в пленках хитозана с экстрактом плодов калины (Viburnum opulus L.) под влиянием плазмонов на модифицированной поверхности титана // Оптический журнал. 2024. Т. 91. № 5. С. 72–84. http://doi.org/10.17586/1023-5086-2024-91-05-72-84
Tsibulnikova A.V., Zemlyakova E.S., Slezhkin V.A., Samusev I.G., Lyatun I.I., Artamonov D.A., Zyubin A.Y., Bryukhanov V.V. Photophysics of singlet oxygen generation in chitosan films with viburnum fruit extract (Viburnum opulus L.) under the influence of plasmons on a modified titanium surface // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 72–84. http://doi.org/10.17586/1023-5086-2024-91-05-72-84
Предмет исследования. Люминесцентные спектрально-кинетические особенности генерации синглетного кислорода в микропленках (толщина 10 мкм) хитозана с экстрактом плодов калины (Viburnum opulus L.), нанесенных на стекло и шероховатую пленку золота толщиной около 80 мкм (на модифицированной поверхности титана). Цель работы. Определение основных фотофизических закономерностей динамики синглетного кислорода в пленках хитозана с экстрактом плодов калины после импульсного монохроматического фотовозбуждения структурированной поверхности титана, покрытой электрохимически осажденной пленкой золота. Метод. Пленки исследованы в видимой и ближней инфракрасной областях спектра флуоресцентным методом. Время жизни люминесценции флавоноидов Viburnum opulus L. в наносекундном диапазоне измерено в режиме счета фотонов с использованием пикосекундного диода. Выполнена регистрация времени жизни триплетных состояний молекул флавоноидов и времени жизни фосфоресценции синглетного кислорода исследуемых экстрактов в микросекундном диапазоне при возбуждении излучением импульсной ксеноновой лампы. Основные результаты. Зарегистрированы длительная замедленная аннигиляционная флуоресценция молекул флавоноидов Viburnum opulus L. в области спектра 590 нм и люминесценция на длине волны 1272 нм, обусловленная синглетным молекулярным кислородом. В работе проделан полный кинетический анализ с учетом констант скоростей фотофизических процессов при участии синглетного кислорода в пленках c экстрактом плодов калины на шероховатых поверхностях золота в условиях насыщения образцов молекулярным кислородом. В микропленках хитозана с экстрактом плодов калины получена стабильная генерация синглетного кислорода. Практическая значимость. Результаты работы могут быть использованы в биологических средствах борьбы с онкологическими заболеваниями.
люминесценция, пленки хитозана, Viburnum opulus L., золото, титан
Благодарность:исследование выполнено в рамках Федерального проекта Государственного задания Министерства образования и науки Российской Федерации (проект № FZWM-2024-0010)
Коды OCIS: 240.6680, 240.5770, 240.0310, 250.5230
Список источников:1. Tuli H.S., Joshi R., Aggarwal D., et al. Molecular mechanisms underlying chemopreventive potential of butein: Current trends and future perspectives // Chem. Biol. Interact. Elsevier B.V. 2021. V. 350. № 16. P. 109699. https://doi.org/10.1016/j.cbi.2021.109699
2. Teka T., Zhang L., Ge X., et al. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review // Phytochem. Elsevier Ltd. 2022. V. 197. № 12. P. 113128. https://doi.org/10.1016/j.phytochem.2022.113128
3. Zhang J., Liu S., Hu X., et al. Cyanine-сurcumin assembling nanoparticles for near-infrared imaging and photothermal therapy // ACS Biomater. Sci. Eng. 2016. V. 2. № 11. P. 1942–1950. https://doi.org/10.1016/B978-0-12-819728-8.00064-4
4. Poõr M., Boba G., Lemli B., et al. Fluorescence spectroscopic investigation of competitive interactions between ochratoxin A and 13 drug molecules for binding to human serum albumin // Luminescence. 2013. V. 28. № 5. P. 726–733. https://doi.org/10.1016/j.jlumin.2017.10.024
5. Ge M., Liu S., Li J., et al. Luminescent materials derived from biomass resources // Coord. Chem. Rev. The Authors. 2023. V. 477. № 12. P. 21–28. https://doi.org/10.1016/j.ccr.2022.214951
6. Xu D.F., Miao L., Zhang J.S., et al. Bis-Iridoids from pterocephalus hookeri and evaluation of their anti-inflammatory activity // Chem. Biodivers. 2022. V. 19. № 4. P. 365–370. https://doi.org/10.1002/cbdv.202100952
7. Zakłos-Szyda M., Pawlik N. The influence of viburnum opulus polyphenolic compounds on metabolic activity and migration of hela and mcf cells // Acta Innov. 2019. V. 15. № 31. P. 33–42. https://doi:10.3390/nu12113398
8. Kajszczak D., Zakłos-Szyda M., Podsędek A. Viburnum opulus L. — A review of phytochemistry and biological effects // Nutrients. 2020. V. 12. № 11. P. 33–38. https://doi: 10.3390/nu12113398
9. Abdelfadel M.M., Khalaf H.H., Sharoba A.M., et al. Effect of extraction methods on antioxidant and antimicrobial materials // Int. J. Advcanced Res. 2015. V. 3. № 12. P. 165–179. https://doi.org/10.1002/cbdv. 202200942
10. Huang W.H., Zhang Q.W., Yuan C.S., et al. Chemical constituents of the plants from the genus oplopanax //
Chem. Biodivers. 2014. V. 11. № 2. P. 181–196. https:// doi:10.1002/cbdv.201200306
11. Perova I.B., Zhogova A.A., Cherkashin A.V., et al. Biologically active substances from european guelder berry fruits // Pharm. Chem. J. 2014. V. 48. № 5. P. 332–339. https://doi:10.1201/b10413-144
12. Saltan G., Süntar I., Ozbilgin S., et al. Viburnum opulus L.: A remedy for the treatment of endometriosis demonstrated by rat model of surgically-induced endometriosis // J. Ethnopharmacol. 2016. V. 193. № 35. P. 450–455. https://doi: 10.1016/j.jep.2016.09.029
13. Qiu S., Zhou S., Tan Y., et al. Biodegradation and prospect of polysaccharide from crustaceans // Mar. Drugs. 2022. V. 20. № 5. P. 358–361. https://doi:10.3390/md20050310
14. Shi Z., Neoh K.G., Kang E.T., et al. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles // Biomaterials. 2006. V. 27. № 11. P. 2440–2449. https://doi: 10.1016/j.biomaterials.2005.11.036
15. Šimůnek J., Brandysová V., Koppová I., et al. The antimicrobial action of chitosan, low molar mass chitosan, and chitooligosaccharides on human colonic bacteria // Folia Microbiol. (Praha). 2012. V. 57. № 4. P. 341–345. https://doi: 10.1007/s12223-012-0138-1
16. Mocanu G., Nichifor M., Mihai D., et al. Bioactive cotton fabrics containing chitosan and biologically active substances extracted from plants // Mater. Sci. Eng. C. Elsevier B.V. 2013. V. 33. № 1. P. 72–77. https://doi:10.1016/j.msec.2012.08.007
17. Rahman A., Goswami T., Naithani N., et al. Hot electron migration from gold nanoparticle to an organic molecule enhances luminescence and photosensitization properties of a pH activatable plasmon-molecule coupled nanocomposite // J. Photochem. Photobiol. A Chem. Elsevier B.V. 2022. V. 432. № 5. P. 114–167. https://doi: 10.1016/j.jphotochem.2022.114067
18. Зенкевич И.Г., Пушкарева Т.И., О моделировании образования димерных продуктов окисления флавоноидов // Химия растительного сырья. 2018. Т. 5. № 3. С. 185–197. https://doi: 10.14258/jcprm.2018033589 Zenkevich I.G., Pushkareva T.I. On modeling the formation of dimeric oxidation products of flavonoids // Chemistry of Plant Raw Materials. 2018. V. 5. № 3. P. 185–197. https://doi: 10.3390/12030654
19. Ru E.C., Etchegoin P.G. Introduction to plasmons and plasmonics // Principles of Surface-Enhanced Raman Spectroscopy. Elsevier. 2009. V. 8. № 3. P. 121–183. https://doi.org/10.1021/ac053456d
20. Vladimirov Y.A., Proskurnina E.V. Free radicals and cell chemiluminescence // Biochem. 2009. V. 74. № 13. P. 1545–1566. https://doi: 10.1134/s0006297909130082
21. Zyubin А.Yu. Numerical FTDT-based simulations and Raman experiments of femtosecond laser LIPSS // Opt. Exp. 2021. V. 29. № 3. P. 4547–4558. https://doi:10.1364/OE.413460
22. Divya J., Selvendran S., Siva Nantha Raja A., et al. Surface plasmon based plasmonic sensors: A review on their past, present and future // Biosensors and Bioelectronics: X. 2022. V. 11. P. 26. https://doi.org/10.1016/j.biosx.2022.100175
23. Lakowicz J.R. Principles of fluorescence spectroscopy. 3rd ed. / Ed. by Lakowicz J.R. Boston, MA: Springer, 2006. 954 p.
24. Al-Nu'airat J., Zeinali N., Dlugogorski B.Z., et al. Review of chemical reactivity of singlet oxygen with organic fuels and contaminants // The Chemical Record. 2020. V. 21. P. 315–342. https://doi: 10.1002/tcr.202000143
25. Kazakov D.V. A new bright chemiluminescent reaction: Interaction of acetone with solid potassium peroxymonosulfate in the complex of europium nitrate // Mendeleev Commun. 2008. V. 18. № 5. P. 249–250. https://doi:10.1016/j.mencom.2008.09.006.
26. Брюханов В. В., Минаев Б. Ф., Цибульникова А. В. и др. Плазмонное усиление и тушение флуоресценции и фосфоресценции анионных и катионных красителей в различных средах // Оптический журнал. 2014. Т. 81. № 11. С. 7–14. Bryukhanov V.V., Minaev B. F., Tsibul’nikova A.V., et al. Plasmon amplification and quenching of the fluorescence and phosphorescence of anionic and cationic dyes in various media // J. Opt. Technol. 2014. V. 81. № 11. P. 625–630. http://dx.doi.org/10.1364/JOT.81.000625
27. Wu X., Li Zh., Tong K., et al. Датчик концентрации этанола на основе поверхностного плазмонного резонанса, усиленного использованием композитных плёнок TiO2-ZnO c гибридными нанолистами MоS2-графена) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 4. С. 53–58. http://doi.org/10.17586/1023-5086-2019-86-04-53-58. Wu X., Li Zh., Tong K., et al. Ethanol concentration sensor based on TiO2-ZnO composite film enhanced surface plasmon resonance with molybdenum disulfide —graphene oxide hybrid nano-sheet // J. Opt. Technol. 2019. V. 86. № 4. P. 238–242. https://doi.org/10.1364/JOT.86.000238
28. Лантух Ю.Д., Летута С.Н., Пашкевич С.Н. и др. Высокоэффективный излучатель на основе пленок желатина с модифицированной структурой // Оптический журнал. 2019. Т. 86. № 9. С. 63–67. http://doi.org/10.17586/1023-5086-2019-86-09-63-67 Lantukh Yu.D., Letuta S.N., Pashkevich S.N., et al. Highly efficient emitter based on gelatin films with a modified structure // J. Opt. Technol. 2019. V. 86. № 9. P. 582–586. https://doi.org/10.1364/JOT.86.000582
29. Волынкин В.М., Евстропьев С.К., Караваева А.В. и др. Прозрачные бактерицидные двухкомпонентные оксидные покрытия на основе TiO2-ZnO и TiO2-MgO на стеклах // Оптический журнал. 2017. Т. 84. № 7. С. 59–63. Volynkin V.M., Evstropiev S.K., Karavaeva A.V., et al. Transparent bactericidal TiO2-ZnO and TiO2-MgO coatings on glass // J. Opt. Technol. 2017. V. 84. № 7. P. 477–480. https://doi.org/10.1364/JOT.84.000477
30. Дадеко А.В., Муравьева Т.Д., Стародубцев А.М. и др. Изучение фотофизических свойств водорастворимого фотосенсибилизатора порфириновой природы — димегина // Оптический журнал. 2016. Т. 83. № 3. С. 71–75. Dadeko A.V., Muravieva T.D., Starodubtsev A.M., et al. Study of the photophysical properties of a water-soluble photosensitizer of porphyrin nature — dimegin // J. Opt. Technol. 2016. V. 83. № 3. P. 193–196. https://doi.org/10.1364/JOT.83.000193