УДК: 531.767, 533.6.08, 543.225, 004.932.2, 778.534.83
Measuring the spatiotemporal parameters of motion of self-luminous particles in high-temperature supersonic flow
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Воронецкий А.В., Михайлов В.Н., Петров Н.В., Стаселько Д.И. Измерение пространственно-временных параметров движения самосветящихся частиц в сверхзвуковом высокотемпературном потоке // Оптический журнал. 2012. Т. 79. № 1. С. 18–24.
Voronetskiĭ A. V., Mikhaĭlov V. N. , Petrov N. V. , Stasel’ko D. I. Measuring the spatiotemporal parameters of motion of self-luminous particles in high-temperature supersonic flow [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 1. P. 18–24.
A. V. Voronetskiĭ, V. N. Mikhaĭlov, N. V. Petrov, and D. I. Stasel’ko, "Measuring the spatiotemporal parameters of motion of self-luminous particles in high-temperature supersonic flow," Journal of Optical Technology. 79 (1), 12-16 (2012). https://doi.org/10.1364/JOT.79.000012
This paper presents a method for recording and processing the images of the tracks of self-luminous fast-moving particles in high-temperature gas flows, based on the use of a domestically manufactured high-speed digital camera with a Nanogate-2 array photodetector having 10-ns temporal resolution. Specially developed software was used to process the experimental data obtained on the test stand of the N. É. Bauman Moscow State Technical University to investigate supersonic spray-coating. The radial distributions of the particles over velocities and concentrations are found, along with their temporal and statistical characteristics, which are needed to estimate how efficiently such flows act on the surface being processed.
anemometry, high-speed photography, digital imaging, image analysis
References:1. I. Grant, “Particle image velocimetry: a review,” Proc. Inst. Mech. Eng. 211, Part C, 55 (1997).
2. L. Lourenco and A. Krothapalli, “On the accuracy of velocity and vorticity measurements with PIV,” Exp. Fluids 18, 421 (1995).
3. D. I. Stasel’ko and V. A. Kosnikovski˘ı, “Holographic recording of spatial ensembles of fast particles,” Opt. Spektrosk. 34, 365 (1973).
4. V. V. Nishcheta, Yu. V. Zubarev, V. P. Minina, and D. I. Stasel’ko, “Investigation of the heterogeneous high-speed fluxes by means of holography,” in Combustion and Explosion (Nauka, Moscow, 1977), pp. 347–348.
5. D. Staselko and A. Golyakov, “3-D holographic images of small moving particles: information capacity, minimal signal, spatial volume and resolution,” in Proceedings of the International Conference EUROMECH 411, Application of PIV, Turbulence Measurements, Developments of 3D Stereoscopic and Holographic Techniques, University of Rouen, France, May 29–31 2000, pp. 61–65.
6. V. A. Kosnikovski˘ı and D. I. Stasel’ko, “Investigation of the quality of the images of coherently illuminated objects observed through three-dimensional ensembles of particles,” Opt. Spektrosk. 49, 774 (1980). [Opt. Spectrosc. (USSR) 49, 423 (1980)].
7. A. V. Voronetski˘ı, V. N. Mikha˘ılov, N. V. Petrov, and D. I. Stasel’ko, “Experimental study of the spatial–velocity parameters of particles in a supersonic two-phase flow,” Trudy NITs Foton. Optoinf. SPb. ITMO 347 (2009).
8. M. E. De˘ıch and G. A. Fillipov, Gasdynamics of Two-Phase Media (´Energoizdat, Moscow, 1981).