УДК: 681.7.068; 681.327.8
Evaluating the possibility of using mode compression in a cascade system for data compression in multimode fiber-optic communication lines
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Свистунов Д.В. Оценка возможности применения модового уплотнения в каскадной схеме уплотнения данных в многомодовых волоконно-оптических линиях связи // Оптический журнал. 2012. Т. 79. № 1. С. 42–51.
Svistunov D. V. Evaluating the possibility of using mode compression in a cascade system for data compression in multimode fiber-optic communication lines [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 1. P. 42–51.
D. V. Svistunov, "Evaluating the possibility of using mode compression in a cascade system for data compression in multimode fiber-optic communication lines," Journal of Optical Technology. 79 (1), 29-35 (2012). https://doi.org/10.1364/JOT.79.000029
The results of an experimental investigation of test samples of the key element of a planar device for selective excitation of multimode optical fibers are used to evaluate the device. An analysis of these results confirms that this device is workable within the limits of the so-called O-band for spectral data compression. This is evidence that a three-stage cascade system can be constructed for data compression in multimode fiber-optic communication lines and local networks. In this system, the method of temporal data compression is used in the first stage, spectral compression in the second stage, and mode compression of the data at the third stage. Such a cascade scheme increases the information capacity of both new multimode fiber systems and systems created in the past decade by a large factor.
fiber-optic communication lines, local networks, data multiplexing, mode multiplexing, selective mode excitation
References:1. M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode-based dispersion-compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 4, 110 (2007).
2. M. Duser and P. Bayvel, “2.5-Gbit/s transmission over 4.5 km of 62.5 μm multimode fibre using centre-launch technique,” Electron. Lett. 36, 57 (2000).
3. C. K. Asawa, “Intrusion-alarmed fiber-optic communication link using a planar waveguide bimodal launcher,” J. Lightwave Technol. 20, 10 (2002).
4. S. S.-H. Yam and F. Achten, “Single-wavelength 40-Gbit/s transmission over 3.4-km broad-wavelength-window multimode fibre,” Electron. Lett. 42, 592 (2006).
5. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701 (2002).
6. B.-T. Lee and S.-Y. Shin, “Mode-order converter in a multimode waveguide,” Opt. Lett. 28, 1660 (2003).
7. D. V. Svistunov, “A planar prism for detection and selective excitation of modes in a multimode channel waveguide,” Pis’ma Zh. Tekh. Fiz. 30, No.8, 62 (2004). [Tech. Phys. Lett. 30, 332 (2004)].
8. D. V. Svistunov, “Selective mode launching in a multimode channel waveguide by planar coupler,” J. Opt. A, Pure Appl. Opt. 6, 859 (2004).
9. S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
10. A. S. Semenov, V. L. Smirnov, and A. V. Shmal’ko, Integrated Optics for Systems for Information Transport and Processing (Radio i Svyaz’, Moscow, 1990).
11. G. Nykolak, G. Wilder, L. Eskildsen, N. Patel, T. Strasser, M. Tsuda, H. Kobayashi, and D. Carter, “Elimination of self-contamination in high-density low-loss single-mode fiber array connectors,” J. Lightwave Technol. 22, 24 (2004).
12. T. Tamir, Integrated Optics (Mir, Moscow, 1978).
13. A. A. Podvyazny˘ı and D. V. Svistunov, “Ion-exchange waveguides formed in glasses using silver-containing melts,” Pis’ma Zh. Tekh. Fiz. 29, No. 11, 35 (2003). [Tech. Phys. Lett. 29, 456 (2003)].
14. E. M. Zolotov, V. A. Kiselev, and V. M. Pelekhaty˘ı, “Determining the characteristics of optical diffuse waveguides,” Kvant. Elektron. (Moscow) 5, 2376 (1978). [Sov. J. Quantum Electron. 8, 1334 (1978)].
15. D. V. Svistunov, “Determination of profile parameters of planar waveguides,” Proc. SPIE 2648, 215 (1995).
16. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).
17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983; Radio i Svyaz’, Moscow, 1987).
18. GOST [State Standard] 13659-78, Colorless optical glass. Physicochemical characteristics. Basic parameters, IPK Izd. Stand., Moscow, 1999.
19. T. Tamir, ed., Guided-Wave Optoelectronics (Springer Verlag, New York, 1990; Mir, Moscow, 1991).
20. J. Rodriguez, S. Fernandez, S. L. Palacios, R. D. Crespo, J. M. Fernandez, A. Guinea, J. M. Virgos, and J. Olivares, “Equivalent-optical-waveguide model for the analysis of optical waveguides by means of an asymptotic effective-index method,” Appl. Opt. 34, 6172 (1995).
21. M. N. Weiss and R. Srivastava, “Determination of ion-exchanged channel waveguide profile parameters by mode-index measurements,” Appl. Opt. 34, 455 (1995).
22. M. G. Galechyan, N. M. Lyndin, D. Kh. Nurligareev, and A. V. Tishchenko, “Anisotropy of waveguides obtained by the electrodiffusion of Cs and K ions from CsNO3 and KNO3 melts into glass,” Zh. Tekh. Fiz. 60, No. 9, 133 (1990). [Tech. Phys. 35, 1081 (1990)].