ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 666.189.21: 666.22

Microstructured single-mode lightguides based on the phenomenon of differential mode damping

For Russian citation (Opticheskii Zhurnal):

Демидов В.В., Дукельский К.В., Тер-Нерсесянц Е.В., Шевандин В.С. Микроструктурированные одномодовые световоды на основе явления дифференциального модового затухания // Оптический журнал. 2012. Т. 79. № 1. С. 52–57.

 

Demidov V. V., Dukel’skiĭ K. V., Ter-Nersesyants E. V., Shevandin V. S. Microstructured single-mode lightguides based on the phenomenon of differential mode damping [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 1. P. 52–57.

For citation (Journal of Optical Technology):
V. V. Demidov, K. V. Dukel’skiĭ, E. V. Ter-Nersesyants, and V. S. Shevandin, "Microstructured single-mode lightguides based on the phenomenon of differential mode damping," Journal of Optical Technology. 79(1), 36-40 (2012).  https://doi.org/10.1364/JOT.79.000036
Abstract:

This paper discusses the modal composition of radiation that propagates along microstructured lightguides with a large-diameter core and a special cladding structure. It is shown that all the designs of optical fibers represented here (lightguides with a displaced core, with a cyclic system of apertures, with C<sub>3v</sub> symmetry) are distinguished from their traditional counterpart by increased stability of the fundamental mode against bending of the lightguide. The single-mode light-propagation regime is achieved in practice in the indicated structures by making the damping coefficients of the fundamental mode and the higher modes substantially different. It is experimentally established that the main advantage of lightguide structures that combine a large core diameter (20–40 µm) with an increased amount of air contained in the cladding is an extended working spectral range.

Keywords:

microstructured light guide, light guide core, mode radiation composition

References:

1. J. Limpert, N. Deguil-Robin, I. Manek-Honninger, F. Salin, F. Roser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13, 1055 (2005).
2. J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, A. Tunnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic-crystal fiber lasers,” Opt. Express 14, 2715 (2006).
3. P. Wang, L. J. Cooper, K. Sahu, and W. A. Clarkson, “Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser,” Opt. Lett. 31, 226 (2006).
4. L. Dong, J. Li, and X. Peng, “Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 μm2,” Opt. Express 14, 11512 (2006).
5. X. Wang and B. Lu, “The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beam,” Opt. Quantum Electron. 34, 1071 (2002).
6. K. V. Dukel’ski˘ı, A. V. Komarov, E. V. Ter-Nersesyants, A. V. Khokhlov, and V. S. Shevandin, “Microstructured lightguides with a large core stable against bending,” in Transactions of the All-Russia Conference on Fiber Optics, Perm’, 10–12 Oct. 2007, pp. 154–155. Special Issue of Foton- ´Ekspress, Nauka, 2007, Session B6.
7. K. V. Dukel‘ski, A. V. Komarov, A. V. Khokhlov, E. V. Ter-Nersesyantz, and V. S. Shevandin, “7- and 19-element-core bend-resistant microstructured fibers,” Trans. Tech. Publ. Adv. Mater. Res. 39–40, 261 (2008).
8. P. M. Agruzov, K. V. Dukel’ski˘ı, A. V. Komarov, E. V. Ter-Nersesyants, A. V. Khokhlov, and V. S. Shevandin, “Developing microstructured lightguides with a large core, and an investigation of their optical properties,” Opt. Zh. 77, No. 1, 77 (2010). [J. Opt. Technol. 77, 59 (2010)].
9. V. V. Demidov, K. V. Dukel’ski˘ı, and V. S. Shevandin, “Modal composition of radiation in microstructured lightguides with a displaced core,” Opt. Zh. 77, No. 6, 55 (2010). [J. Opt. Technol. 77, 394 (2010)].
10. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design and characterization of single-mode holey fibers with low bending losses,” Opt. Express 13, 4770 (2005).
11. M. D. Nielsen, N. A. Mortensen, and J. R. Folkenberg, “Reduced microdeformation attenuation in large-mode-area photonic-crystal fibers for visible applications,” Opt. Lett. 28, 1645 (2003).
12. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, “Single-mode photonic-crystal fibre with effective area of 600 μm2 and low bending loss,”  Electron. Lett. 39, 1802 (2003).

13. M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, and A. Bjarklev, “Bandwidth comparison of photonic-crystal fibers and conventional single-mode fibers,” Opt. Express 12, 430 (2004).
14. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic-crystal fibers,” Opt. Express 12, 1775 (2004).