УДК: 535.343.2: 537.533.9: 546.284'46
Variation of the absorption spectra of forsterite laser crystals with active Cr3+ and Cr4+ ions under the action of a beam of high-energy electrons
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лебедев В.Ф., Теняков С.Ю., Гайстер А.В. Изменение спектров поглощения лазерных кристаллов форстерита с активными ионами Cr3+ и Cr4+ под воздействием пучка высокоэнергетичных электронов // Оптический журнал. 2012. Т. 79. № 1. С. 69–78.
Lebedev V. F., Tenyakov S. Yu. , Gaister А. V. Variation of the absorption spectra of forsterite laser crystals with active Cr3+ and Cr4+ ions under the action of a beam of high-energy electrons [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 1. P. 69–78.
V. F. Lebedev, S. Yu. Tenyakov, and A. V. Gaister, "Variation of the absorption spectra of forsterite laser crystals with active Cr3+ and Cr4+ ions under the action of a beam of high-energy electrons," Journal of Optical Technology. 79(1), 49-55 (2012). https://doi.org/10.1364/JOT.79.000049
This paper discusses the variation of the absorption spectra of single crystals of forsterite Mg2SiO4 as a result of irradiation with an beam of electrons with energy 21 MeV. The irradiation causes additional absorption to appear in the crystals in the form of a broad band in the 350–800-nm region, with its maximum in the 430-nm region (E‖c). The additional absorption intensity is usually substantially higher in crystals grown in an oxidizing atmosphere than in crystals grown in a neutral atmosphere, with the exception of crystals strongly doped with chromium, for which the value of the additional absorption is virtually independent of the oxidative potential of the growth atmosphere. When crystals of chromium-containing forsterite grown in an oxidizing atmosphere are codoped with lithium, one additional intense polarized band appears in the absorption spectrum, with a polarization-dependent maximum close to 375 nm (E‖b) or 400 nm (E‖c).
additional absorption, irradiation, single crystals of forsterite with chromium
References:1. V. Petricevic, S. K. Gayen, and R. R. Alfano, “Chromium-activated forsterite laser,” in OSA Proceedings on Tunable Solid-State Lasers, vol. 5, Washington: DC, 1989, pp. 77–84.
2. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. K¨artner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr : forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26, 292 (2001).
3. V. F. Lebedev, A. V. Gaister, S. Yu. Tenyakov, and E. V. Zharikov, “Cr3+, Li : Mg2SiO4 single crystal as promising active medium for one-micron tunable solid-state lasers,” Proc. SPIE 5478, 37 (2004).
4. I. D. Ryabov, A. V. Ga˘ıster, and E. V. Zharikov, “Electron paramagnetic resonance of Cr3+-Li+ centers in (Cr,Li) : Mg2SiO4 synthetic forsterite,” Fiz. Tverd. Tela 45, 51 (2003). [Phys. Solid State 45, 51 (2003)].
5. V. F. Lebedev, I. D. Ryabov, A. V. Ga˘ıster, A. S. Podstavkin, E. V. Zharikov, and A. V. Shestakov, “Spectral and generation properties of a new laser crystal (Cr3+, Li) : Mg2SiO4,” Fiz. Tverd. Tela 47, 1447 (2005). [Phys. Solid State 47, 1504 (2005)].
6. A. V. Ga˘ıster, E. V. Zharikov, V. F. Lebedev, A. S. Podstavkin, S. Yu. Tenyakov, A. V. Shestakov, and I. A. Shcherbakov, “Pulsed and cw lasing in a new Cr3+: Li : Mg2SiO4 laser crystal,” Kvant. Elektron. (Moscow) 34, 693 (2004). [Quantum Electron. 34, 693 (2004)].
7. V. F. Lebedev, S. Yu. Tenyakov, A. S. Podstavkin, A. V. Shestakov, A. V. Gaister, E. V. Zharikov, and I. A. Scherbakov, “CW and pulse laser action in new Cr3+,Li:Mg2SiO4 crystal,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics, 2005, paper 7.
8. V. F. Lebedev, S. Yu. Tenyakov, A. V. Gaister, A. S. Podstavkin, A. V. Shestakov, and V. N. Sorokin, “Tunable continuous-wave operation of a Cr3+: Li : Mg2SiO4 laser,” Opt. Lett. 31, 1438 (2006).
9. A. O. Matkovski˘ı, D. Yu. Sugak, S. B. Ubizski˘ı, O. I. Shpotyuk, E. A. Cherny˘ı, N. M. Vakiv, and V. A. Mokritski˘ı, The Action of Ionizing Radiation on the Materials of Electronic Engineering (Svit, L’vov, 1994).
10. M. Kosmala, E. Mugenski, and W. Strek, “The effect of γ -irradiation on the optical properties of Cr-doped forsterite,” Zh. Prikl. Spektrosk. 62, 164 (1995).
11. S. M. Kaczmarek, W. Chen, and G. Boulon, “Recharging processes of Cr ions in Mg2SiO4 and Y3Al5O12crystals under influence of annealing and γ -irradiation,” Cryst. Res. Technol. 41, 41 (2006).
12. V. F. Lebedev, S. Yu. Tenyakov, E. A. Vanina, I. V. Gopienko, S. V. Simakov, and E. V. Zharikov, “The action of high-energy electrons on the spectroluminescence properties of chromium-doped laser single crystals of forsterite Mg2SiO4: Cr,” Perspekt. Mat. No. 3, 36 (2005).
13.V. F. Lebedev, S. Yu. Tenyakov, E. A. Vanina, I. V. Gopienko, S. V. Simakov, K. A. Subbotin, and E. V. Zharikov, “Effect of
high-energy electron irradiation on spectroscopic properties of forsterite single crystals,” Proc. SPIE 6054, 605406 (2006).
14. V. F. Lebedev, A. V. Ga˘ıster, S. Yu. Tenyakov, A. E. Levchenko, E. M. Dianov, and E. V. Zharikov, “Spectral and luminescent properties of forsterite single crystals heavily doped with chromium: I. Absorption spectra,” Kvant. Elektron. (Moscow) 33, 192 (2003). [Quantum Electron. 33, 192 (2003)].
15. W. Chen and G. Boulon, “Growth mechanism of Cr : forsterite laser crystal with high Cr concentration,” Opt. Mater. 24, 163 (2003).
16. O. Jaoul, Y. Bertran-Alvarez, R. C. Liebermann, and G. D. Price, “Fe–Mg interdiffusion in olivine up to 9 GPa at T = 600–900 ◦C; experimental data and comparison with defect calculations,” Phys. Earth Planet. Inter. 89, 199 (1995).
17. J. L. Mass, J. M. Burlitch, S. A. Markgraf, M. Higuchi, R. Dieckmann, D. B. Barber, and C. R. J. Pollock, “Oxygen activity dependence of the chromium (IV) population in chromium-doped forsterite crystals grown by the floating-zone technique,” J. Cryst. Growth 165, 250 (1996).
18. V. B. Dudnikova, A. V. Ga˘ıster, E. V. Zharikov, N. I. Gul’ko, V. G. Senin, and V. S. Urusov, “The effect of conjoint isomorphism on the solubility of chromium in forsterite,” Neorg. Mater. 39, 985 (2003).
19. A. E. Nosenko and L. V. Kostyk, “Radiation color centers in gallium garnets,” Ukr. Fiz. Zh. 31, No. 1, 75 (1986).
20. M. V. Klassen-Neklyudova and Kh. S. Bagdasarov, Ruby and Sapphire (Nauka, Moscow, 1974).
21. V. F. Lebedev, S. Yu. Tenyakov, I. D. Ryabov, A. V. Ga˘ıster, and E. V. Zharikov, “Study of Cr3+ (1) centers in a Cr,Li : Mg2SiO4,” in The Eleventh National Conference on Crystal Growth, Moscow, 13–17 December 2004, Abstracts of Reports, Moscow (IKAN, 2004), p. 25.