ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42

Diffraction at binary microaxicons in the near field

For Russian citation (Opticheskii Zhurnal):

Хонина С.Н., Савельев Д.А., Серафимович П.Г., Пустовой И.А. Дифракция на бинарных микроаксиконах в ближней зоне // Оптический журнал. 2012. Т. 79. № 10. С. 22–29.
     
Khonina S. N., Savel’ev D. A., Pustovoĭ I. A., Serafimovich P. G.  Diffraction at binary microaxicons in the near field  [in English] // Opticheskii Zhurnal. 2012. V. 79. № 10. P. 22–29.

 

For citation (Journal of Optical Technology):

S. N. Khonina, D. A. Savel’ev, I. A. Pustovoĭ, and P. G. Serafimovich, "Diffraction at binary microaxicons in the near field," Journal of Optical Technology. 79(10), 626-631 (2012). https://doi.org/10.1364/JOT.79.000626

Abstract:

This paper discusses the formation of the central light spot by means of a binary diffraction axicon with high numerical aperture, using a difference method of solving Maxwell’s equations in the temporal region. It is shown that the broadening of the central light spot that unavoidably appears when the beam that illuminates the axicon is linearly polarized can be compensated by introducing a linear phase singularity (perpendicular to the polarization direction) into the beam. A very compact, weakly broadened light spot whose size in the immediate vicinity of the surface of the optical element is 37% less than the diffraction limit can be formed in this case by varying the substrate thickness.

Keywords:

binary diffraction axicon, optical element with a high numerical aperture, difference method for solving Maxwell equations time domain, linear polarization, phase singularity, overcoming diffraction limit

OCIS codes: 050.1380, 050.1970

References:
1. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc.Am. 44, 592 (1954).
2. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959 (1988).
3. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748 (1989).
4. A. J. Cox and D. C. Dibble, “Holographic reproduction of a diffraction-free beam,” Appl. Opt. 30, 1330 (1991).
5. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932 (1991).
6. R. P. MacDonald, J. Chrostowski, S. A. Boothroyd, and B. A. Syrett, “Holographic formation of a diode-laser nondiffracting beam,” Appl. Opt. 32, 6470  (1993).
7. J. Rosen, B. Salik, and A. Yariv, “Pseudo-nondiffracting beams generated by radial harmonic functions,” J. Opt. Soc. Am. A 12, 2446 (1995).
8. L. Niggl, T. Lanzl, and M. Maier, “Properties of Bessel beams generated by periodic gratings of circular symmetry,” J. Opt. Soc. Am. A 14, 27 (1997).
9. P. Paakkonen, J. Lautanen, M. Honkanen, M. Kuittinen, J. Turunen, S. N. Khonina, V. V. Kotlyar, V. A. Soifer, and A. T. Friberg, “Rotating optical fields: experimental demonstration with diffractive optics,” J. Mod. Opt. 45, 2355 (1998).
10. J. Tervo and J. Turunen, “Generation of vectorial propagation-invariant fields by polarization-grating axicons,” Opt. Commun. 192, 13 (2001).
11. P. Vahimaa, V. Kettunen, M. Kuittinen, J. Turunen, and A. T. Friberg, “Electromagnetic analysis of nonparaxial Bessel beams generated by diffractive axicons,” J. Opt. Soc. Am. A 14, 1817 (1997).
12. S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159 (1991).
13. J. Turunen and A. T. Friberg, “Electromagnetic theory of reflaxicon beams,” Pure Appl. Opt. 2, 539 (1993).
14. Y. Z. Yu and W. B. Dou, “Vector analyses of nondiffracting Bessel beams,” Prog. Electromag. Res. Lett. 5, 57 (2008).
15. V. P. Kalosha and I. Golub, “Toward the subdiffraction focusing limit of optical superresolution,” Opt. Lett. 32, 3540 (2007).
16. V. V. Kotlyar and S. S. Stafeev, “Modeling the sharp focusing of a radially polarized laser mode by means of conical and binary microaxicons,” Komp. Opt. 33, 52 (2009).
17. S. N. Khonina, A. V. Ustinov, S. G. Volotovski˘ı, and M. A. Anan’in, “An algorithm for fast calculation of the diffraction of radial-vortex laser fields at a microaperture,” Izv. Samar. Nauch. Tsent. RAN, No. 12(3), 15 (2010).
18. T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14, 2203 (2006).
19. S. N. Khonina, A. A. Kovalev, A. V. Ustinov, and S. G. Volotovski˘ı, “The propagation of radially limited vortical beams in the near field: II. Results of modelling,” Komp. Opt. 34, 332 (2010).
20. S. N. Khonina and S. G. Volotovsky, “Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures,” J. Opt. Soc. Am. A 27, 2188 (2010).
21. S. N. Khonina and I. Golub, “Optimization of focusing of linearly polarized light,” Opt. Lett. 36, 352 (2011).
22. S. N. Khonina, “Forming an axial cutoff with a decrease of the transverse size for linear polarization of an illuminating beam by means of high-aperture axicons that possess no axial symmetry,” Komp. Opt. 34, 461 (2010).
23. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786 (1989).