ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.373.826.038.823: 535.21.

Modernized singlet-oxygen generator based on porous solid-phase fullerene-containing structures

For Russian citation (Opticheskii Zhurnal):

Багров И.В., Белоусова И.М., Гренишин А.С., Киселев В.М., Кисляков И.М., Мак А.А., Соснов Е.Н. Модернизированный генератор синглетного кислорода на базе пористых твердофазных фуллеренсодержащих структур // Оптический журнал. 2012. Т. 79. № 10. С. 35–41.

 

Bagrov I. V., Belousova I. M., Kislyakov I. M., Grenishin A. S., Kiselev V. M., Mak A. A., Sosnov E. N. Modernized singlet-oxygen generator based on porous solid-phase fullerene-containing structures  [in English] // Opticheskii Zhurnal. 2012. V. 79. № 10. P. 35–41.

For citation (Journal of Optical Technology):

I. V. Bagrov, I. M. Belousova, I. M. Kislyakov, A. S. Grenishin, V. M. Kiselev, A. A. Mak, and E. N. Sosnov, "Modernized singlet-oxygen generator based on porous solid-phase fullerene-containing structures," Journal of Optical Technology. 79(10), 636-640 (2012). https://doi.org/10.1364/JOT.79.000636

Abstract:

This paper presents a description of a modified singlet-oxygen generator of gas-flowthrough type with a closed oxygen-circulation system based on porous solid-phase fullerene-containing structures that operate in the continuous regime, with optical pumping of the fullerene by an LED array. The results of experimental studies of the developed device are shown. A singlet-oxygen throughput of up to 3.2×1018 molecule/cm2s was implemented when the prototype was tested, with a quantum yield of about 45%.

Keywords:

fullerene, singlet oxygen, optical pumping, fullerene-oxygen-iodine laser, laser radiation

OCIS codes: 140.1340, 260.0260, 260.3800, 300.6280, 350.4600

References:
1. A. S. Grenishin, I. V. Bagrov, I. M. Belousova, V. M. Kiselev, and E. N. Sosnov, “Singlet-oxygen generator of gas-flowing type on base of porous fullerene-containing structures,” in Fourteenth International Conference on Laser Optics LO-2010: Book of Abstracts, St. Petersburg, RF, June 2010, p. 28.
2. I. M. Belousova, O. B. Danilov, V. M. Kiselev, and A. A. Mak, “Conversion of solar energy to laser beam by fullerene–oxygen–iodine laser,” Proc. SPIE 7822, 78220N (2011).
3. I. V. Bagrov, I. M. Belousova, A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov, and E. N. Sosnov, “A jet-type singlet-oxygen generator based on porous fullerene-containing structures,” Opt. Spektrosk. 112, 1009 (2012). [Opt. Spectrosc. 112, 935 (2012)].
4. M. K. Nissen, S. M. Wilson, and M. L. W. Thewalt, “Highly structured singlet-oxygen photoluminescence from crystalline C60,” Phys. Rev. Lett. 69, 2423 (1992).
5. V. N. Denisov, B. N. Mavrin, Zh. Ruani, R. Zamboni, and K. Taliani, “The effect of oxygen and the excitation wavelength on the photoluminescence of a fullerene film,” Zh. Prikl. Spektrosk. 57, 489 (1992).
6. V. N. Denisov, B. N. Mavrin, and A. A. Zachidov, “Oxygen effect on photoluminescence of fullerite C60 thin films,” Synth. Met. 56, 3119 (1993).
7. A. S. Grenishin, V. M. Kiselev, I. M. Kislyakov, A. L. Pavlova, and E. N. Sosnov, “Advancement and problems of fullerene-oxygen-iodine laser,” Opt. Spektrosk. 108, 133 (2010). [Opt. Spectrosc. 108, 143 (2010)].
8. H. J. Baker and T. A. King, “Repetitively pulsed iodine laser with thermal gas flow cycle,” J. Phys. D: Appl. Phys. 14, 1367 (1981).
9. A. S. Grenishin, N. A. Gryaznov, and V. M. Kiselev, “Repetitively pulsed  iodine laser with Q-switch and controlled spectrum of radiation,” Proc. SPIE 2095, 171 (1994).
10. L. A. V. Schlie and R. D. Rathge, “70-J repeated-pulse (0.5 Hz) closed-cycle photolytic atomic-iodine laser at 1.315 microns with excellent BQ, coherence length, and reliable operation,” Proc. SPIE 1628, 138 (1992).
11. I. H. Hwang and B. M. Tabibi, “A model for a continuous-wave iodine laser,” J. Appl. Phys. 68, 4983 (1990).
12. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. S. Benavides, N. R. Richardson, K. W. Kittel, and W. C. Solomon, “Studies of CW laser oscillation on the 1315-nm transition of atomic iodine pumped by O2 (α11) produced in an electric discharge,” IEEE J. Quant. Electron. 41, 1309 (2005).
13. O. V. Proshina, T. V. Rakhimova, O. V. Braginsky, A. S. Kovalev, D. V. Lopaev, Yu. A. Mankelevich, A. T. Rakhimov, and A. N. Vasilieva, “Discharge singlet-oxygen generator for oxygen–iodine laser: II. Two- dimensional modeling of flow oxygen rf plasma at 13.56 and 81 MHz power frequency,” J. Phys. D: Appl. Phys. 39, 5191 (2006).
14. J. W. Zimmerman, B. S. Woodard, G. F. Benavides, D. L. Carroll, J. T. Verdeyen, A. D. Palla, and W. C. Solomon, “Gain and
continuous-wave laser power enhancement with a multiple-discharge electric oxygen–iodine laser,” Appl. Phys. Lett. 92, 241115 (2008).
15. D. L. Carroll and J. T. Verdeyen, “Effect of including a diffraction term into Rigrod theory for a continuous-wave laser,” Appl. Opt. 48, 6035 (2009).
16. S. D. Razumovski˘ı, Oxygen—Elementary Forms and Properties (Khimiya, Moscow, 1979).