УДК: 535.015
Scaling in the characteristics of aperiodic multilayer structures
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Короленко П.В., Мишин А.Ю., Рыжикова Ю.В. Скейлинг в характеристиках апериодических многослойных структур // Оптический журнал. 2012. Т. 79. № 12. С. 11–16.
Korolenko P. V., Mishin A. Yu., Ryzhikova Yu. V. Scaling in the characteristics of aperiodic multilayer structures [in English] // Opticheskii Zhurnal. 2012. V. 79. № 12. P. 11–16.
P. V. Korolenko, A. Yu. Mishin, and Yu. V. Ryzhikova, "Scaling in the characteristics of aperiodic multilayer structures," J. Opt. Technol. 79, 754-757 (2012). https://doi.org/10.1364/JOT.79.000754
This paper contains an analysis of the optical properties of aperiodic multilayer structures constructed using the Morse–Thue, double-period, Fibonacci, and Rudin–Shapiro numerical sequences. A general quantitative law is established that determines how the scaling in their Fourier transforms is related to their spectral characteristics. Some practical aspects of the use of aperiodic systems are considered.
aperiodic multilayer structures, scaling, cluster dimension, self-similarity symmetry
OCIS codes: 310.4165, 310.6188
References:E. L. Albuquerque and M. G. Cottam, “Theory of elementary excitations in quasi-periodic structures,” Phys. Rep. 376, 225 (2003).
2V. A. Bushuev, B. I. Mantsyzov, and A. D. Pryamikov, “Analysis of the second-harmonic-generation efficiency in one-dimensional photonic crystals as a function of the wavelength and the layer thickness,” Perspek. Mat. No. 6, 38 (2001).
3L. N. Makarava, M. M. Nazarov, I. A. Ozheredov, A. P. Shkurinov, A. G. Smirnov, and S. V. Zhukovsky, “Fibonacci-like photonic structure for femtosecond pulse compression,” Phys. Rev. E 75, 036609 (2007).
4F. Chiadini, V. Fiumara, I. Gallina, and A. Scaglione, “Omnidirectional band gap in Cantor dielectric multilayers,” Opt. Commun. 282, 4009 (2009).
5S. Golmohammadi and A. Rostami, “Optical filters using optical multi-layer structures for optical communication systems,” Fiber Integr. Opt. 29, 209 (2010).
6W.-G. Feng, W.-Z. He, D.-P. Xue, Y.-B. Xu, and X. Wu, “Reflection of soft x-rays and extreme ultraviolet from a metallic Fibonacci quasi-superlattice,” J. Phys. Condens. Matter 1, 8241 (1989).
7E. A. Sakun, A. V. Polyushkevich, P. A. Kharlashin, O. V. Semenova, and A. Ya. Korets, “Development of porous silicon-based structures,” J. Sib. Fed. Univ. Eng. Technol. 3, 430 (2010).
8O. V. Angelsky, “New feasibilities for characterizing rough surfaces by optical correlation techniques,” Proc. SPIE 4607, 241 (2002).
9S. K. Stafeev and A. A. Zinchik, “Using fractal masks to visualize the optical inhomogeneities of transparent materials,” Opt. Zh. 70, No. 11, 49 (2003). [J. Opt. Technol. 70, 806 (2003)].
10F. Axel, J.-P. Allouchet, and Z.-Y. Wen, “On certain properties of high-resolution x-ray diffraction spectra of finite-size generalized Rudin–Shapiro multilayer heterostructures,” J. Phys. Condens. Matter 4, 8713 (1992).
11N. V. Grushina, A. M. Zotov, P. V. Korolenko, and A. Yu. Mishin, “Gold. Cross-section and self-similar structures in optics,” Vest. Moskov. Univ. Fiz. Astron. No. 4, 47 (2009).
12K. Esaki, M. Sato, and M. Kohmoto, “Wave propagation through Cantor-set media: chaos, scaling, and fractal structures,” Phys. Rev. E 79, 056226 (2009).
13M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1970).
14E. Maci´a, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69, 397 (2006).
15J. Feder, Fractals (Plenum Press, New York, 1988; Mir, Moscow, 1991).