УДК: 535.645.646
Color-discrimination thresholds and differential geometry
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Lozhkin L. D. Color-discrimination thresholds and differential geometry // Opticheskii Zhurnal. 2012. V. 79. № 2. P. 22–28.
L. D. Lozhkin, "Color-discrimination thresholds and differential geometry," Journal of Optical Technology. 79(2), 75-79 (2012). https://doi.org/10.1364/JOT.79.000075
This paper discusses the possibility of constructing an equal-contrast color space based on the mathematical apparatus used in Einstein’s general theory of relativity. Such a construction makes it possible to avoid the drawbacks inherent to the color spaces that are currently known and used—namely, the difference of the sizes of the MacAdam ellipses, depending on the chromaticity of the stimulus.
color locus, color separation thresholds, color horizon, Mac Adam ellipses, Einstein equation, color tone, color saturation, color tensor
OCIS codes: OCIS: 330.1690, 330.1710
References:1. D. L. MacAdam, “Color essays,” J. Opt. Soc. Am. 65, 463 (1975).
2. D. L. MacAdam, “Specification of small chromaticity differences,” J. Opt. Soc. Am. 33, 18 (1943).
3. W. Stiles, “18th Thomas Young oration. The basic data of colour matching,” Phys. Soc. Year Book 44, 248 (1955).
4. D. B. Judd and G. Wyszecki, Color in Business, Science, and Industry (Wiley, New York, 1975; Mir, Moscow, 1978).
5. L. D. Lozhkin, Web site on information technologies: Certificate of specialized registration of development No. OFAP 12111, L. D. Lozhkin. VNTITs Appl. 1/11/2009; data registr. 1/16/2009. URL: http://ofap.ru/rto files/12111.doc.
6. L. D. Lozhkin, Differential Colorimetry, ed., A. I. Tyazhev (Monografiya, Samara, 2010), p. 320.
7. M. Ya. Vygodski˘ı, Handbook on Higher Mathematics (Nauka, Moscow, 1973).
8. L. D. Lozhkin and A. I. Tyazhev, “Multicolor colorimeter,” Russian Patent No. 93 977 (2010).
9. J. R. Jimenez, E. Hita, J. Romero, and L. Jimenez, “Scalar curvature of space as a source of information of new uniformity aspects concerning to color representation systems,” J. Opt. 24, 243 (1993).
10. “The Kerr solution,” in Internet Resource, http://dic.academic.ru/dic.nsf/ ruwiki/1121264.
11. A. S. Ninul, Tensor Trigonometry. Theory and Applications (Mir, Moscow, 2004).
12. P. K. Rashevski˘ı, Riemann Geometry and Tensor Analysis (Nauka, Moscow, 1967).