УДК: 547.97: 535.8; 541.147
How SiO2 nanoparticles affect the self-organization of acrylic composites cured with UV radiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бурункова Ю.Э., Денисюк И.Ю., Семьина С.А. Исследование влияния наночастиц SiO2 на самоорганизацию акрилатных композитов, отверждаемых ультрафиолетовым излучением // Оптический журнал. 2012. Т. 79. № 2. С. 67–71.
Burunkova J. A., Denisyuk I. Yu., Semina S. A. How SiO2 nanoparticles affect the self-organization of acrylic composites cured with UV radiation // Opticheskii Zhurnal. 2012. V. 79. № 2. P. 67–71.
S. A. Semina, J. A. Burunkova, and I. Yu. Denisyuk, "How SiO2 nanoparticles affect the self-organization of acrylic composites cured with UV radiation," Journal of Optical Technology. 79(2), 108-111 (2012). https://doi.org/10.1364/JOT.79.000108
This paper discusses homogeneous nanocomposite media that contain up to 12 wt% of SiO2 nanoparticles. The method of producing nanocomposites is based on the processes of self-organization accompanying the formation of thin polymer shells around each nanoparticle, which is the main way of obtaining an optical quasi-homogeneous material. When the initial monomeric compound is polymerized with UV irradiation, a solid transparent nanocomposite is obtained. Infrared spectroscopy and the determination of the sorption and hardness of the composites are used to confirm the presence of self-organization processes accompanying the formation of the material. The types of nanoparticle–polymer chemical bonds are investigated and determined.
nanocrystal, refractive index, filled polymer, UV curable nanocomposite, nanocomposite structure, nanoparticles
OCIS codes: 160.4236, 310.6860, 310.6870, 160.5470, 240.0310
References:1. A. S. Rozenberg, G. I. Dzhardimalieva, and A. D. Pomogailo, “Polymer composites of nano-sized particles isolated in matrix,” Polym. Adv. Technol. 9, 527 (1998).
2. A. D. Pomogailo and V. S. Savost’yanov, Synthesis and Polymerization of Metal-Containing Monomers (CRC Press, Boca Raton, 1994).
3. A. D. Pomogailo, A. S. Rozenberg, G. I. Dzhardimalieva, and M. Leonowicz, “Polymer nanocomposites on the base of metal carboxylates,” Adv. Mater. Sci. 1, 19 (2001).
4. Yu. ´E. Burunkova, S. A. Sem’ina, L. N. Kaporski˘ı, and V. V. Levichev, “Nanomodified optical acrylate composites,” Opt. Zh. 75, No. 10, 54 (2008). [J. Opt. Technol. 75, 653 (2008)].
5. I. Yu. Denisyuk, T. R. Williams, and J. E. Burunkova, “Hybrid optical material based on high nanoparticles concentration in UV-curable polymers–technology and proprieties,” Mol. Cryst. Liq. Cryst. 497, 142 (2008).
6. A. P. Vinogradov, Electrodynamics of Composite Materials (URSS, Moscow, 2001).
7. S. Jiguet, A. Bertsch, M. Judelewicz, H. Hofmann, and P. Renaud, “SU-8 nanocomposite photoresist with low stress properties for microfabrication applications,” Microelectron. Eng. No. 83, 1966 (2006).
8. A. Kh. Kuptsov and G. N. Zhizhin, Fourier–Raman and Fourier-IR Spectra of Polymers. A Handbook (Fizmatlit, 2001).