УДК: 535.4
A polymeric holographic material with diffusion amplification for the near-UV region
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Мармыш Д.Н., Станкевич А.И., Могильный В.В. Полимерный голографический материал с диффузионным усилением для ближней УФ области // Оптический журнал. 2012. Т. 79. № 2. С. 79–85.
Marmysh D. N., Stankevich A. I., Mogil’nyĭ V. V. A polymeric holographic material with diffusion amplification for the near-UV region // Opticheskii Zhurnal. 2012. V. 79. № 2. P. 79–85.
D. N. Marmysh, A. I. Stankevich, and V. V. Mogil’nyĭ, "A polymeric holographic material with diffusion amplification for the near-UV region," Journal of Optical Technology. 79(2), 116-120 (2012). https://doi.org/10.1364/JOT.79.000116
This paper presents the results of experimental studies of the optical recording and thermal amplification of phase gratings in a new polymeric composite with diffusion amplification, based on PMMA and benzophenone. The phase gratings were recorded by exposing layers to incoherent UV radiation (365 nm) through an amplitude mask and an interference pattern formed by the radiation of a pulsed Nd : YAG laser (355 nm). Post-exposure heat treatment of the layers resulted in amplification of the gratings. The kinetics of the process are consistent with concepts of the diffusion nature of the amplification. The photo- and thermostability of the gratings after amplification made it possible to conclude that photoattachment of the benzophenone to the PMMA occurs in
the layers, resulting in diffusion relaxation of the inhomogeneous distribution of the benzophenone concentration. Refractive-index modulation of 1.6 × 10−3 was achieved for PMMA layers containing benzophenone with a mole fraction of 2%.
phase detection material, benzophenone, photo attachment, diffusion enhancement
OCIS codes: 090.1970, 090.7330
References:1. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B: Lasers Opt. 82, 299 (2006).
2. F. Clube, S. Gray, D. Struchen, and J.-C. Tisserand, “Holographic microlithography,” Opt. Eng. 34, 2724 (1995).
3. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971; Mir, Moscow, 1975).
4. A. I. Ra˘ıchenko, Mathematical Theory of Diffusion in Applications (Naukov Dumka, Kiev, 1981).
5. F. W. Deeg, J. Pinsl, and Chr. Brauchle, “Hydrogen abstraction of benzophenone from polymer matrices: evaluation of quantum yields and photomechanical effects,” J. Phys. Chem. 90, 5715 (1986).
6. A. V. Veniaminov, V. F. Goncharov, and A. P. Popov, “Hologram amplification by diffusion destruction of out-of-phase periodic structures,” Opt. Spektrosk. 70, 864 (1991). [Opt. Spectrosc. 70, 505 (1991)].
7. J. Guillet, Polymer Photophysics and Photochemistry (Cambridge U. Press, New York, 1985; Mir, Moscow, 1988).
8. Chr. Brauchle, D. M. Burland, and G. C. Bjorklund, “Hydrogen abstraction by benzophenone studied by holographic photochemistry,” J. Phys. Chem. 85, 123 (1981).
9. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone–PMMA media,” J. Opt. A, Pure Appl. Opt. 10, 085302 (2008).
10. N. S. Zefirov, Chemical Encyclopedia, Vol. 4 (Bol’shaya Rossi˘ıskaya Entsiklopediya, Moscow, 1995).
11. B. P. Nikol’ski˘ı, Chemical Handbook, Vol. 2 (Izd. Khim, 1971).
12. A. A. Askadski˘ı and V. I. Kondrashchenko, Computer Material Science of Polymers, Vol. 1 (Nauchn. Mir, Moscow, 1999).
13. V. V. Mogil’ny˘ı and A. M. Lazareva, “How diffusion of the free volume affects the thermoisomerization of azomethine compounds in glassy polymer films,” Vysokomol. Soed. Ser. B 36, 2088 (1994).