ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535: 778.38: 004.932.2

Image-quality criteria in the digital holography of particles

For Russian citation (Opticheskii Zhurnal):

Дёмин В.В., Каменев Д.В. Критерии качества изображений в цифровой голографии частиц // Оптический журнал. 2012. Т. 79. № 4. С. 17-21.

 

Dyomin V. V., Kamenev D. V. Image-quality criteria in the digital holography of particles [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 4. P. 17-21.

For citation (Journal of Optical Technology):

V. V. Dyomin and D. V. Kamenev, "Image-quality criteria in the digital holography of particles," Journal of Optical Technology. 91(1), 208-211 (2012).  https://doi.org/10.1364/JOT.79.000208

Abstract:

This paper discusses quantitative criteria for the quality of the reconstructed holographic images of particles—the boundary contrast and the boundary falloff. The results of experimental studies of how these criteria depend on the additive noise level in a reconstructed image are presented, as well as how they depend on the number of quantization levels of a CCD array when the hologram is being recorded. It is shown that the criteria can be used to refine the position of the plane of best focusing of an image during reconstruction.

Keywords:

digital particle holography, holographic image quality criteria, boundary contrast, boundary drop, best plane recovery focus

OCIS codes: 090.1995, 100.2000, 100.2960

References:

1. V. V. Dyomin and S. G. Stepanov, “Study of the orientation characteristics of model crystalline aerosols by a holographic method,” Optika Atmos. Okeana 13, 833 (2000). [Atmos. Oceanic Opt. 13, 773 (2000)].
2. J. P. Fugal and R. A. Shaw, “Cloud particle size distributions measured with an airborne digital in-line holographic instrument,” Atmos. Meas. Tech. No. 2, 259 (2009).
3. V. P. Shorin, O. A. Zhuravlev, L. G. Logak, L. N. Medinskaya, and A. I. Fedosov, “Holographic apparatus for the study of two-phase flows,” Prib. Tekh. ´Eksp. No. 5, 158 (1985).
4. D. W. Pfitsch, E. Malkiel, Y. Ronzhes, S. R. King, J. Sheng, and J. Katz, “Development of a free-drifting submersible digital holographic imaging system,” in Proc. MTS/IEEE OCEANS, 2005, p. 690.
5. H. Sun, D. C. Hendry, M. A. Player, and J. Watson, “In-situ underwater electronic holographic camera for studies of plankton,” IEEE J. Ocean. Eng. 32, 373 (2007).
6. V. V. Dyomin, A. S. Ol’shukov, E. Yu. Naumova, and N. G. Mel’nik, “Digital holography of plankton,” Optika Atmos. Okeana 21, 1089 (2008). [Atmos. Oceanic Opt. 21, 951 (2008)].
7. V. V. Dyomin, A. S. Ol’shukov, and E. V. Dzyuba, “Digital holographic video for studies of plankton dynamics,” Izv. Vyssh. Uchebn. Zaved. Fiz. 53, No. 8, 81 (2010). [Russ. Phys. J. 53, 857 (2011)].
8. V. V. Dyomin and D. V. Kamenev, “Quality criteria for holographic images of particles of various shapes,” Izv. Vyssh. Uchebn. Zaved. Fiz. 53, No. 9, 46 (2010). [Russ. Phys. J. 53, 927 (2011)].