УДК: 535.36
Metamaterials with a network structure
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Жилин А.А., Таганцев Д.К., Шепилов М.П., Запалова С.С., Алемаскин М.Ю., Сазонов М.Е. Метаматериалы с сетчатой структурой // Оптический журнал. 2012. Т. 79. № 4. С. 62–68.
Zhilin A. A., Tagantsev D. K., Alemaskin M. Yu., Shepilov M. P., Zapalova S. S., Sazonov M. E. Metamaterials with a network structure [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 4. P. 62–68.
A. A. Zhilin, D. K. Tagantsev, M. Yu. Alemaskin, M. P. Shepilov, S. S. Zapalova, and M. E. Sazonov, "Metamaterials with a network structure," Journal of Optical Technology. 79(4), 241-245 (2012). https://doi.org/10.1364/JOT.79.000241
This paper is a review of the literature data on metamaterials with a network structure, which are currently the most promising type of metamaterials for obtaining a negative refractive index in the optical region. “Monomolecular” layers of metamaterials of this type with a negative refractive index in the IR and visible regions are presented. For a bulk metamaterial with a network structure, a negative refractive index in the 1.54–1.775-µm wavelength region has been demonstrated on the basis of Snell’s law.
metamaterials, negative refractive index, superlens, electromagnetic properties
OCIS codes: 230.3205, 160.3918, 160.4760, 160.1190, 230.0230
References:1. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
2. A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008). [J. Opt. Technol. 75, 255 (2008)].
3. M. P. Shepilov and A. A. Zhilin, “Metamaterials and the problem of creating invisible objects. 1. Objects with size less than a wavelength,” Opt. Zh. 75, No. 12, 40 (2008). [J. Opt. Technol. 75, 792 (2008)].
4. M. P. Shepilov and A. A. Zhilin, “Metamaterials and the problem of creating invisible objects. 2. Invisible shells that conceal the objects contained in them from an external observer,” Opt. Zh. 76, No. 6, 40 (2009). [J. Opt. Technol. 76, 350 (2009)].
5. W. Cai and V. Shalaev, Optical Metamaterials. Fundamentals and Applications (Springer, New York, 2010).
6. A. A. Zhilin and M. P. Shepilov, “Metamaterials—a new specialization in material science,” Fiz. Khim. Stekla 36, 657 (2010).
7. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Usp. Fiz. Nauk 92, 517 (1967). [Sov. Phys. Usp. 10, 509 (1968)].
8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5514, 77 (2001).
9. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, No. 7211, 376 (2008).
10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
11. U. Leonhardt, “Optical conformal mapping,” Science 312, No. 5781, 1777 (2006).
12. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, No. 5781, 1780 (2006).
13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, No. 5801, 977 (2006).
14. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials 2, 1 (2008).
15. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478 (2009).
16. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922 (2005).
17. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index materials,” Phys. Rev. Lett. 95, 137 404 (2005).
18. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434 (2006).
19. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
20. D. R. Smith, S. Schultz, P. Markoˇs, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
21. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wave-lengths,” Opt. Lett. 31, 1800 (2006).
22. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780-nm wavelength,” Opt. Lett. 32, 53 (2007).
23. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal–dielectric stacks,” Opt. Express 14, 6778 (2006).
24. M. Navarro-C´ıa, M. Beruete, M. Sorolla, and I. Campillo, “Negative refraction in a prism made of stacked subwavelength hole arrays,” Opt. Express 16, 560 (2008).