ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.32

Principles of a new method of obtaining optical metamaterials

For Russian citation (Opticheskii Zhurnal):

Жилин А.А., Таганцев Д.К., Шепилов М.П., Запалова С.С., Алемаскин М.Ю., Сазонов М.Е. Основы нового метода получения оптических метаматериалов // Оптический журнал. 2012. Т. 79. № 4. С. 69–76.

 

Zhilin A. A., Tagantsev D. K., Alemaskin M. Yu., Shepilov M. P., Zapalova S. S., Sazonov M. E., Principles of a new method of obtaining optical metamaterials  [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 4. P. 69–76.

For citation (Journal of Optical Technology):

A. A. Zhilin, D. K. Tagantsev, M. Yu. Alemaskin, M. P. Shepilov, S. S. Zapalova, and M. E. Sazonov, "Principles of a new method of obtaining optical metamaterials," Journal of Optical Technology. 79(4), 246-250 (2012). https://doi.org/10.1364/JOT.79.000246

Abstract:

Metamaterials that are network-type silver–dielectric structures are currently the most promising substances for observing negative refractive index in the optical region. This paper proposes a method for forming such metamaterials on the basis of silver-containing glasses. The method is based on the procedure of poling silver-containing glasses using an electrode (an anode) with a relief picture on the contact surface. When polarized glasses are heat-treated in a hydrogen atmosphere, a metallic (silver) film that replicates the electrode relief is formed on the surface of the glass. The corresponding picture and modulation depth of the electrode relief make it possible to create regular network structures of silver nanofilms (either a system of disks or a continuous film with holes) on the glass surface, with a characteristic size of the periodic structural elements less than 500 nm. The unification of the structures thus obtained into sandwiches makes it possible to obtain two-layer metamaterials.

Keywords:

metamaterial, poling, nonlinear optical properties

OCIS codes: 160.1245, 160.3918, 160.236, 160.4670, 160.4760

References:

1. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
2. A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008). [J. Opt. Technol. 75, 255 (2008)].
3. M. P. Shepilov and A. A. Zhilin, “Metamaterials and the problem of creating invisible objects. 2. Invisible shells that conceal the objects contained in them from an external observer,” Opt. Zh. 76, No. 6, 40 (2009). [J. Opt. Technol. 76, 350 (2009)].
4. W. Cai and V. Shalaev, Optical Metamaterials. Fundamentals and Applications (Springer, New York, 2010).
5. A. A. Zhilin and M. P. Shepilov, “Metamaterials—a new specialization in  material science,” Fiz. Khim. Stekla 36, 657 (2010).
6. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials 2, 1 (2008).
7. A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].
8. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21, 468 (1996).
9. H. An and S. Fleming, “Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses,” J. Opt. Soc. Am. B 23, 2303 (2006).
10. A. Kameyama, A. Yokotani, and K. Kurosawa, “Second-order optical nonlinearity and change in refractive index in silica glasses by a combination of thermal poling and x-ray irradiation,” J. Appl. Phys. 95, 4000 (2004).
11. Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65, 043816 (2002).
12. R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87, 232904 (2005).
13. A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ionics 181, 849 (2010).
14. V. V. Rusan, D. K. Tagantsev, A. A. Lipovski˘ı, and K. Pa˘ıvasaari, “New method of recording phase optical structures in glasses,” Fiz. Khim. Stekla 36, 641 (2010).
15. V. V. Rusan and D. K. Tagantsev, “New method of recording images in glasses,” Fiz. Khim. Stekla 35, 293 (2009).
16. M. Qiu, T. Mizunami, R. Vilaseca, F. Pi, and G. Orriols, “Bulk and near-surface second-order nonlinearities generated in a BK7 soft glass by thermal poling,” J. Opt. Soc. Am. B 19, 37 (2002).
17. B. Roy, H. Jain, S. Roy, and D. Chakravorty, “The development of nanosize silver particles in an ion-exchanged silicate glass matrix,” J. Non-Cryst. Solids 222, 102 (1997).
18. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
19 .A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
20. S. Ohmi, H. Sakai, Y. Asahara, S. Nakayama, Y. Yoneda, and T. Izumitani, “Gradient-index rod lens made by a double ion-exchange process,” Appl. Opt. 27, 496 (1988).
21. Y. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353, 2263 (2007).
22. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
23. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
24. M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” Nanophotonics 5, 051513 (2011).
25 .E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).
26 .R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).