УДК: 621.376.234: (621.396.62: 523.164)
Planar system for recording submillimeter radiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Есман А.К., Кулешов В.К., Зыков Г.Л., Залесский В.Б. Планарная система регистрации субмиллиметрового излучения // Оптический журнал. 2012. Т. 79. № 6. С. 67–71.
Esman A. K., Kuleshov V. K., Zykov G. L., Zalesskiĭ V. B. Planar system for recording submillimeter radiation [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 6. P. 67–71.
A. K. Esman, V. K. Kuleshov, G. L. Zykov, and V. B. Zalesskiĭ, "Planar system for recording submillimeter radiation," Journal of Optical Technology. 79(6), 363-365 (2012). https://doi.org/10.1364/JOT.79.000363
This paper shows that implementing a system for the reception and detection of submillimeter radiation on the basis of open planar microresonance structures in the form of apodized dielectric gratings with a fill factor that varies according to a linear law, connected through an impedance transformer with a low-barrier zero-bias Schottky detector diode, makes it possible to achieve- losses to reflection of −26.5 dB,- a standing-wave factor of 1.1,- conversion efficiency 98.6%, with an NEP of 8.05×10−12 WHz−1/2.
apodized dielectric lattice, low barrier zero-offset Schottky diode, submillimeter emission, impedance transformer
OCIS codes: 040.2235, 040.6808, 110.3080
References:1. K. V. Marem’yanin, D. M. Ermolaev, D. V. Fateev, S. V. Morozov, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, V. V. Popov, and S. Yu. Shapoval, “Wide-aperture detector of terahertz radiation based on GaAs/InGaAs transistor structure with large-area slit grating gate,” Pis’ma Zh. Tekh. Fiz. 36, No. 8, 39 (2010). [Tech. Phys. Lett. 36, 365 (2010)].
2. N. Momot, V. Zabudsky, Z. Tsybrii, M. Apats’ka, M. Smoliy, and N. Dmytruk, “Zero-bias terahertz and subterahertz detector operating at room temperature,” Semicond. Phys. Quantum Electron. Optoelectron. 13, 166 (2010).
3. R. Han, Y. Zhang, D. Coquillat, J. Hoy, H. Videlier, W. Knap, E. Brown, and K. O. Kenneth, “280-GHz Schottky diode detector in 130-nm digital CMOS,” in 2010 IEEE Custom Integrated Circuits Conference, San Jose, California, USA, 2010, pp. 619–623.
4. E. Giovine, R. Casini, D. Dominijanni, A. Notargiacomo, M. Ortolani, and V. Foglietti, “Fabrication of Schottky diodes for terahertz imaging,” Microelectron. Eng. 88, 2544 (2011).
5. F. G. Gonzalez and G. D. Boreman, “Comparison of dipole, bow-tie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418 (2005).
6. A. K. Esman, V. K. Kuleshov, and G. L. Zykov, “Detecting antenna for the terahertz range,” Belarus Republic Patent for useful model No. 7220 (2011).
7. FSS v12.0 User Manual Pittsburgh, Penn.: Ansoft Corporation, 2009.
8. S. E. Bankov and A. A. Kurushin, Designing Antennas and Microwave Structures by means of HFSS Ansoft (ZAO NPP Rodnik, Moscow, 2009).
9. C. Sydlo, O. Cojocari, D. Schonherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62, No. 5–6, 107 (2008).
10. V. I. Shashkin, Y. A. Drjagin, V. R. Zakamov, S. V. Krivov, L. M. Kukin, A. V. Murel, and Y. I. Chechenin, “Millimeter-wave detectors based on antenna-coupled low-barrier Schottky diodes,” Int. J. Infrared Millim. Waves 28, 945 (2007)