ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.376.234: (621.396.62: 523.164)

Planar system for recording submillimeter radiation

For Russian citation (Opticheskii Zhurnal):

Есман А.К., Кулешов В.К., Зыков Г.Л., Залесский В.Б. Планарная система регистрации субмиллиметрового излучения // Оптический журнал. 2012. Т. 79. № 6. С. 67–71.

 

Esman A. K., Kuleshov V. K., Zykov G. L.,  Zalesskiĭ V. B.  Planar system for recording submillimeter radiation  [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 6. P. 67–71.

For citation (Journal of Optical Technology):

A. K. Esman, V. K. Kuleshov, G. L. Zykov, and V. B. Zalesskiĭ, "Planar system for recording submillimeter radiation," Journal of Optical Technology. 79(6), 363-365 (2012).  https://doi.org/10.1364/JOT.79.000363

Abstract:

This paper shows that implementing a system for the reception and detection of submillimeter radiation on the basis of open planar microresonance structures in the form of apodized dielectric gratings with a fill factor that varies according to a linear law, connected through an impedance transformer with a low-barrier zero-bias Schottky detector diode, makes it possible to achieve- losses to reflection of −26.5 dB,- a standing-wave factor of 1.1,- conversion efficiency 98.6%, with an NEP of 8.05×10−12 WHz−1/2.

Keywords:

apodized dielectric lattice, low barrier zero-offset Schottky diode, submillimeter emission, impedance transformer

OCIS codes: 040.2235, 040.6808, 110.3080

References:

1. K. V. Marem’yanin, D. M. Ermolaev, D. V. Fateev, S. V. Morozov, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, V. V. Popov, and S. Yu. Shapoval, “Wide-aperture detector of terahertz radiation based on GaAs/InGaAs transistor structure with large-area slit grating gate,” Pis’ma  Zh. Tekh. Fiz. 36, No. 8, 39 (2010). [Tech. Phys. Lett. 36, 365 (2010)].
2. N. Momot, V. Zabudsky, Z. Tsybrii, M. Apats’ka, M. Smoliy, and N. Dmytruk, “Zero-bias terahertz and subterahertz detector operating at room temperature,” Semicond. Phys. Quantum Electron. Optoelectron. 13, 166 (2010).
3. R. Han, Y. Zhang, D. Coquillat, J. Hoy, H. Videlier, W. Knap, E. Brown, and K. O. Kenneth, “280-GHz Schottky diode detector in 130-nm digital CMOS,” in 2010 IEEE Custom Integrated Circuits Conference, San Jose, California, USA, 2010, pp. 619–623.
4. E. Giovine, R. Casini, D. Dominijanni, A. Notargiacomo, M. Ortolani, and V. Foglietti, “Fabrication of Schottky diodes for terahertz imaging,” Microelectron. Eng. 88, 2544 (2011).
5. F. G. Gonzalez and G. D. Boreman, “Comparison of dipole, bow-tie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46, 418 (2005).
6. A. K. Esman, V. K. Kuleshov, and G. L. Zykov, “Detecting antenna for the terahertz range,” Belarus Republic Patent for useful model No. 7220 (2011).
7. FSS v12.0 User Manual Pittsburgh, Penn.: Ansoft Corporation, 2009.
8. S. E. Bankov and A. A. Kurushin, Designing Antennas and Microwave Structures by means of HFSS Ansoft (ZAO NPP Rodnik, Moscow, 2009).
9. C. Sydlo, O. Cojocari, D. Schonherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62, No. 5–6, 107 (2008).
10. V. I. Shashkin, Y. A. Drjagin, V. R. Zakamov, S. V. Krivov, L. M. Kukin, A. V. Murel, and Y. I. Chechenin, “Millimeter-wave detectors based on antenna-coupled low-barrier Schottky diodes,” Int. J. Infrared Millim. Waves 28, 945 (2007)