ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.131: 535.137 + 535.42

Savukov V. V., Golubenko I. V. Modeling the interaction of an arbitrary light field with a diffraction grating by the Monte Carlo method

For Russian citation (Opticheskii Zhurnal):

Савуков В.В., Голубенко И.В. Моделирование взаимодействия произвольного светового поля с дифракционной решеткой методом Монте-Карло  // Оптический журнал. 2012. Т. 79. № 7. С. 10–17.

 

Savukov V. V., Golubenko I. V. Modeling the interaction of an arbitrary light field with a diffraction grating by the Monte Carlo method  [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 7. P. 10–17.

For citation (Journal of Optical Technology):

V. V. Savukov and I. V. Golubenko, "Modeling the interaction of an arbitrary light field with a diffraction grating by the Monte Carlo method," Journal of Optical Technology. 79(7), 390-394 (2012), https://doi.org/10.1364/JOT.79.000390

Abstract:

A high-accuracy solution of the diffraction problem has become necessary for the treatment of certain special questions of statistical physics. This article reports the creation of a computer program that serves as an instrumental method of calculating the parameters of diffraction phenomena when complex optical systems are being theoretically investigated. The program solves the diffraction problem by a rigorous method based on Maxwell’s equations under specified boundary conditions. An arbitrary—for instance, diffuse—configuration of the initial light field is allowed. Reflective gratings with a linear or crossed sinusoidal profile of the surface microrelief are considered as the diffraction optical elements. The characteristics of the self-consistent total light field can be calculated when several diffraction elements are present in the system.

Keywords:

diffraction, polarization, indicatrix, scattering, diffuse

OCIS codes: 050.1940, 260.1960, 260.5430, 290.2648, 290.5855

References:

1. I. M. Sobol’, Monte Carlo Numerical Methods (Nauka, Moscow, 1973).
2. V. V. Savukov, “Breakdown of the isotropy of diffuse radiation as a consequence of its diffraction at multidimensional regular structures,” Opt. Zh. 77, No. 1, 95 (2010). [J. Opt. Technol. 77, 74 (2010)].
3. V. V. Savukov, “Refining the axiomatic principles of statistical physics,” Deposited at the All-Russia Institute of Scientific and Technical Information, No. 1249B2004 on 7/16/2004. URL: http://www.savukov.ru/ viniti 1249 b2004 full rus.pdf.
4. V. V. Savukov, “Breakdown of Lambert’s law when a diffuse photon gas is diffracted at multidimensional regular structures,” Deposited at the All-Russia Institute of Scientific and Technical Information, No. 507-B2009 on 8/3/2009. URL: http://www.savukov.ru/viniti 0507 b2009 full rus.pdf.
5. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
6. J. Chandezon, G. Cornet, and G. Raoult, “Propagation des ondes dans les guides cylindriques `a g´en´eratrices sinuso¨ıdales,” C. R. Acad. Sci. (Paris) No. 276B, 507 (1973).
7. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11, 235 (1980).
8. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839 (1982).
9. E. J. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics (North Holland Pub. Co, Amsterdam, 1962).
10. G. Granet, “Diffraction par des surfaces biperiodiques: resolution en coordonn´ees non orthogonales,” Pure Appl. Opt. 4, 777 (1995).
11. G. Granet, “Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: application to multilayer crossed gratings,” J. Opt. Soc. Am. A 15, 1121 (1998).
12. I. M. Sobol’, Multidimensional Quadrature Formulas and the Haar Function (Nauka, Moscow, 1969).
13. I. M. Sobol’ and R. B. Statnikov, Choosing the Optimum Parameters in Problems with Many Criteria (Nauka, Moscow, 1981).
14. D. Maystre and R. Petit, “Brewster incidence for metallic gratings,” Opt. Commun. 17, 196 (1976).
15. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396 (1902).
16. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Royal Soc. London Ser. A 79, 399 (1907).