УДК: 537.527.2
A vacuum ultraviolet source based on a sliding discharge
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Трещалов А.Б., Лисовский А.А. Источник вакуумного ультрафиолетового излучения на основе скользящего разряда // Оптический журнал. 2012. Т. 79. № 8. С. 15–23.
Treshchalov A.B., Lisovskiĭ A.A. A vacuum ultraviolet source based on a sliding discharge [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 8. P. 15–23.
A. B. Treshchalov and A. A. Lisovskiĭ, "A vacuum ultraviolet source based on a sliding discharge," Journal of Optical Technology. 79(8), 456-461 (2012). https://doi.org/10.1364/JOT.79.000456
The paper discusses a pulsed high-current sliding discharge on a sapphire surface, used to excite gases (Ar, Kr) at a pressure of up to 25 atm. The space–time dynamics of the evolution of the sliding discharge is measured. The spectrotemporal dependence of its luminescence is analyzed, and the processes that affect the emission of the plasma in the VUV region are discussed. The possibilities of a sliding discharge for directly pumping gas lasers are demonstrated for XeCl and KrF excimer lasers with lasing energy 0.15 and 0.12 mJ, respectively, and a pulse repetition rate up to 1 kHz with no circulation of the gas.
VUF, continuum, excimer laser, spectroscopic diagnosis, high-current sliding discharge, sapphire
OCIS codes: 300.6540, 280.5395, 140.2180
References:1. C. K. Rhodes, ed., Excimer Lasers (Springer-Verlag, New York, 1979; Mir, Moscow, 1981).
2. N. Merbahi, G. Ledru, N. Sewraj, and F. J. Marchal, “Electrical behavior and vacuum ultraviolet radiation efficiency of monofilamentary xenon dielectric barrier discharges,” Appl. Phys. 101, 123309 (2007).
3. H. Ninomiya and K. Nakamura, “Ar∗2 emission from a pulsed electric discharge in a pure Ar gas,” Opt. Commun. 134, 521 (1997).
4. S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe∗2 dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).
5. S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar∗2 excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).
6. A. B. Treshchalov and A. A. Lisovski˘ı, “Spectroscopic diagnostics of a pulsed discharge in high-pressure argon,” Kvant. Elektron. (Moscow) 40, 234 (2010). [Quantum Electron. 40, 234 (2010)].
7. A. Treshchalov and A. Lissovski, “VUV-VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon,” J. Phys. D: Appl. Phys. 42, 245203 (2009).
8. D. Yu. Zaroslov, G. P. Kuz’min, and V. F. Tarasenko, “Sliding discharge in excimer lasers,” Radio Eng. Electr. Phys. 29, No. 7, 1 (1984).
9. P. A. Atanasov and A. A. Serafetinides, “Tea lasers excited by a sliding discharge along the surface of a dielectric,” Opt. Commun. 72, 356 (1989).
10. G. N. Tsikrikas, A. A. Serafetinides, and A. D. Papayannis, “Development of a sliding discharge pumped HF laser,” Opt. Commun. 132, 295 (1996).
11. V. M. Borisov, V. A. Vodchiz, A. V. Eltsov, and O. B. Khristoforov, “Powerful highly efficient KrF lamp excited by surface and barrier discharge,” Quantum Electron. 25, 308 (1998).
12. R. E. Beverly III, “Electrical, gasdynamic, and radiative properties of planar surface discharges,” J. Appl. Phys. 60, 104 (1986).
13. A. Lagarkov and I. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Springer-Verlag, New York, 1993), pp. 195–207.
14. B. Arad, Y. Gazit, and A. Ludmirsky, “A sliding discharge device for producing cylindrical shock waves,” J. Phys. D: Appl. Phys. 20, 360 (1987).
15. A. B. Treshchalov and V. K. Bashkin, “Spectroscopic diagnostics of sliding discharge as an efficient excitation source for high-pressure gas mixtures,” in Proc. of the Int. Symposium on High-Pressure Low-Temperature Plasma Chemistry HAKONE VI, Cork, Ireland, 1998, pp. 29–34.
16. A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.
17. A. Lissovski and A. Treshchalov, “VUV-VIS imaging of high-pressure pulsed volume discharge in argon,” IEEE Trans. Plasma Sci. 36, 958 (2008).
18. A. Treshchalov and A. Lissovski, “VUV-VIS imaging of high-pressure pulsed discharge in argon,” Proc. SPIE 6938, 69380Y-1 (2006).
19. A. Lissovski and A. Treshchalov, “Emission of the third continuum of argon excited by a pulsed volume discharge,” Phys. Plasmas 16, 123501 (2009).
20. D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr∗2 at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).
21. A. Treshchalov and A. Lissovski, “Dye laser absorption probing of high-current pulsed volume discharge in argon,” Proc. SPIE 6263, 62630L-1 (2006).
22. W. Sasaki, T. Shirai, and S. Kubodera, “Observation of vacuum-ultraviolet Kr∗2 laser oscillation pumped by a compact discharge device,” Opt. Lett. 26, 503 (2001).
23. W. M. Hughes, J. Shannon, and R. Hunter, “126.1-nm molecular argon laser,” Appl. Phys. Lett. 24, 488 (1974).
24. W.-G. Wrobel, H. R¨ohr, and K.-H. Steuer, “Tunable vacuum ultraviolet laser action by argon excimers,” Appl. Phys. Lett. 36, 113 (1980).
25. S. Neeser, M. Schumann, and H. Langhoff, “Improved gain for the Ar∗2 excimer laser at 126 nm,” Appl. Phys. B: Lasers Opt. 63, 103 (1997).