ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.327.9; 535-31; 537.527.3; 537.527.9

Vacuum-ultraviolet excilamps with excitation by a barrier corona discharge

For Russian citation (Opticheskii Zhurnal):

Ломаев М.И., Скакун В.С., Тарасенко В.Ф., Шитц Д.В., Ерофеев М.В. Эксилампы вакуумного ультрафиолетового диапазона с возбуждением барьерным коронным разрядом // Оптический журнал. 2012. Т. 79. № 8. С. 83–91.
     
Lomaev M. I., Skakun V. S., Tarasenko V. F., Shitts D. V., Erofeev M. V. Vacuum-ultraviolet excilamps with excitation by a barrier corona discharge  [in English] // Opticheskii Zhurnal. 2012. V. 79. № 8. P. 83–91.

 

For citation (Journal of Optical Technology):

M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, "Vacuum-ultraviolet excilamps with excitation by a barrier corona discharge," Journal of Optical Technology. 79(8), 503-508 (2012). https://doi.org/10.1364/JOT.79.000503

Abstract:

This paper presents the results of studies of excilamps with excitation by a barrier corona discharge, which is characterized by inhomogeneous broadening of the electric field between  the electrodes, one of which is covered by a dielectric. It is established that the radiation efficiency from inert-gas dimers under these excitation conditions reaches 45% at 172 nm and 25% at 146 nm. These studies were used as a basis for creating a radiator complex consisting of sealed xenon-dimer excilamps with a radiation power of up to 120 W, and a wide-aperture compact excilamp with argon pumped through the discharge volume. The radiation power density of the compact excilamp reached 10 mW/cm2 in the windowless regime.

Keywords:

vacuum ultraviolet, exilampa, barrier corona, single-barrier discharge

OCIS codes: 230.6080; 260.7210

References:

1. A. N. Za˘ıdel’ and E. Ya. Shre˘ıder, Vacuum Ultraviolet Spectroscopy (Nauka, Moscow, 1967).
2. F. Vollkommer and L. Hitzschke, “Dielectric barrier discharge,” in Proceedings of the Eighth International Symposium on Science & Technology of Light Sources, Greifswald, Germany, 30 Aug.–3 Sept. 1998, pp. 51–60.
3. G. N. Gerasimov, “Optical spectra of binary rare-gas mixtures,” Usp. Fiz. Nauk 174, 155 (2004). [Phys. Usp. 47, 149 (2004)].
4. U. Kogelschatz, “Excimer lamps: history, discharge physics, and industrial applications,” Proc. SPIE 5483, 272 (2004).
5. R. P. Mildren and R. J. Carman, “Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation,” J. Phys. D: Appl. Phys. 34, L1 (2001).
6. A. M. Boichenko, S. I. Yakovlenko, and V. F. Tarasenko, “Electron-beam- excited excilamp’s optimal characteristics,” Laser Part. Beams 18, 655 (2000).
7. M. Salvermoser and D. E. Murnick, “Efficient, stable, corona-discharge 172-nm xenon-excimer light source,” J. Appl. Phys. 94, 3722 (2003).
8. Yu. S. Akishev, A. V. Dement’ev, V. B. Karal’nik, A. E. Monich, and N. I. Trushkin, “Comparison of the ac barrier corona with dc positive and negative coronas and barrier discharge,” Fiz. Plazmy 29, 90 (2003). [Plasma Phys. Rep. 29, 82 (2003)].
9. V. F. Tarasenko, A. S. Tobolkin, O. G. Bashagurov, A. A. Kuznetsov, and V. S. Skakun, “Broad-band radiation of an inert-gas plasma excited by a modulated rf discharge,” Izv. Vyssh. Uchebn. Zaved. Fiz. No. 10, 32 (1995).
10. E. Arnold, M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, A. N. Tkachev, D. V. Shitts, and S. I. Yakovlenko, “Formation of a volume discharge in a xenon single-barrier excilamp with a low-curvature cathode,” Laser Phys. 12, No. 5, 1 (2002).
11. E. Arnold, M. I. Lomaev, A. A. Lisenko, V. S. Skakun, V. F. Tarasenko, A. N. Tkachev, D. V. Shitts, and S. I. Yakovlenko, “Volume discharge formation in a one-barrier xenon excimer lamp,” Laser Phys. 14, 809 (2004).
12. M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Pis’ma Zh. Tekh. Fiz. 32, No. 13, 74 (2006). [Tech. Phys. Lett. 32, 590 (2006)].
13. A. A. Lisenko, M. I. Lomaev, V. S. Skakun, and V. F. Tarasenko, “Effective emission of Xe2 and Kr2 bounded by a dielectric barrier,” Phys. Scr. 76, 211 (2007).
14. M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, and D. V. Shitts, “One- and two-barrier excilamps on xenon dimers operating in the VUV range,” Zh. Tekh. Fiz. 78, No. 2, 103 (2008). [Tech. Phys. 53, 244 (2008)].
15. D. V. Shitts, V. S. Skakun, and V. F. Tarasenko, “A complex of excilamps based on xenon dimers for a flow-through photoreactor,” Prib. Tekhnika Eksp. No. 5, 129 (2008).
16. M. I. Lomaev, A. A. Lisenko, V. S. Skakun, D. V. Shitz, V. F. Tarasenko, and Y. Matsumoto, “Dielectric barrier discharge excimer light source,” Japanese Patent No. 3 887 641.
17. A. N. Tkachev and S. I. Yakovlenko, “Simulation of plasma cathode layer parameters of effective excilamps,” Laser Phys. 12, 1022 (2002).
18. T. Shao, V. F. Tarasenko, C. Zhang, D. V. Rybka, I. D. Kostyrya, A. V. Kozyrev, P. Yan, and V. Yu. Kozhevnikov, “Runaway electrons and x-rays from a corona discharge in atmospheric-pressure air,” New J. Phys. 13, 113305 (2011)