УДК: 621.372.821.3, 621.383, 621.391.822
How defects of the end surfaces of a lightguide affect the mode-interference parameters when optical vortices are present
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кизеветтер Д.В. Влияние дефектов торцевых поверхностей световода на параметры модового шума при наличии оптических вихрей // Оптический журнал. 2013. Т. 80. № 1. С. 10–16.
Kiesewetter D.V. How defects of the end surfaces of a lightguide affect the mode-interference parameters when optical vortices are present [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 1. P. 10–16.
D. V. Kizevetter, "How defects of the end surfaces of a lightguide affect the mode-interference parameters when optical vortices are present," Journal of Optical Technology. 80(1), 7-11 (2013). https://doi.org/10.1364/JOT.80.000007
The mode interference that accompanies spatial filtering of the radiation coming out of a multimode fiber lightguide with scattering and nonscattering end surfaces has been experimentally studied for propagation both of optical vortices and of ordinary waveguide modes. It is established that the mode interference created by the output radiation of optical vortices with identical directions of rotation of the wave front is greater than that created by waveguide modes with a planar wave front, because of the difference of the size of the speckle spots. It is shown that, when optical vortices are present in a lightguide, the SNR can be increased by artificially creating diffuse scattering at the input or output end surface.
fiber lightguide, modal noise, optical vortice, speckle structure
OCIS codes: 060.2300
References:1. E. G. Rawson and J. W. Goodman, “Modal noise in multimode optical fibers,” Proc. SPIE 355, 37 (1982).
2. V. Yu. Petrun’kin, V. M. Nikolaev, V. V. Zhakhov, O. I. Kotov, and V. N. Filippov, “Theoretical and experimental study of modal noise in fiber lightguides,” Zh. Tekh. Fiz. 55, 1317 (1985) [Tech. Phys. 30, 762 (1985)].
3. V. V. Nesterov and A. A. Skoblin, “Study of the speckle noise of multimode optical lightguides,” Zh. Tekh. Fiz. 55, 869 (1985) [Tech. Phys. 30, 519 (1985)].
4. D. V. Kizevetter and V. I. Malyugin, “Fiber-optic receiver assembly,” Inventor’s Certificate 1, 354155, USSR, Byull. Izobr. No. 43 (1987).
5. D. V. Kizevetter, “Numerical simulation of a speckle pattern formed by radiation of optical vortices in a multimode optical fibre,” Kvant. Elektron. (Moscow) 38, 172 (2008) [Quantum Electron. 38, 172 (2008)].
6. D. V. Kizevetter, Polarization and Interference Effects in Multimode Fiber Lightguides (Lambert Academic Publishing, Leipzig, 2011).
7. D. V. Kizevetter, “Quasi-ray description of intermode interference of the radiation of optical vortices in short fiber lightguides,” Opt. Zh. 75, No. 1, 80 (2008) [J. Opt. Technol. 75, 64 (2008)].
8. B. R. Levin, Theoretical Principles of Statistical Radio Engineering (Sov. Radio, Moscow, 1974).
9. D. V. Kizevetter, “Approximating the angular transfer responses of fiber lightguides,” Opt. Zh. 74, No. 9, 20 (2007) [J. Opt. Technol. 74, 592 (2007)].
10. D. V. Kizevetter and V. I. Malyugin, “Method of exciting the modes of a multimode fiber lightguide when its parameters are being measured,” Inventor’s Certificate 1, 509793, USSR, Byull. Izobr. No. 35 (1989).
11. M. E. Zhabotinski, A. A. Zatykin, S. K. Morshnev, A. S. Ryabov, and A. V. Frantsesson, “Sharp bending of a fiber lightguide—the basis of sensors of physical quantities,” Radiotekhnika 37, No. 8, 8 (1982).