УДК: 681.7.068
Attenuation modulation of guided modes in optical fibers with a coating based on vanadium dioxide
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Агафонова Д.С., Грунин В.К., Сидоров А.И. Модуляция затухания волноводных мод в оптических волокнах с покрытием на основе диоксида ванадия // Оптический журнал. 2013. Т. 80. № 1. С. 3–9.
Agafonova D.S., Grunin V.K., Sidorov A.I. Attenuation modulation of guided modes in optical fibers with a coating based on vanadium dioxide [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 1. P. 3–9.
D. S. Agafonova, V. K. Grunin, and A. I. Sidorov, "Attenuation modulation of guided modes in optical fibers with a coating based on vanadium dioxide," Journal of Optical Technology. 80(1), 1-6 (2013). https://doi.org/10.1364/JOT.80.000001
This paper presents the results of experimental and theoretical studies of the optical characteristics of fibers made from silicate glasses with coatings in the form of a polycrystalline film or nanoparticles of vanadium dioxide in the wavelength range 0.8–1.8 µm. It is shown that the variation of the optical properties of the coating with temperature causes efficient attenuation modulation of the optical signal in the fiber. The modulation depth in fibers with a nanocomposite coating is a factor of 3–4 times greater than in fibers with a thin-film coating. This is because plasma resonance is present in nanoparticles of vanadium dioxide in the metallic phase.
fibers with coating, radiation modulation, phase transition, vanadium dioxide
Acknowledgements:This work was carried out with the support of Grant KÉOP-43 for graduate students, post-doctoral students, and young scientists.
OCIS codes: 060.2290, 060.2370
References:1. A. A. Bugaev, B. P. Zakharchenya, and F. A. Chudnovskiĭ, The Semiconductor–Metal Phase Transition and Its Application (Nauka, Leningrad, 1979).
2. M. I. Grigor’ev, A. S. Oleĭnik, and V. F. Smolyakov, “Thermochromic indicators based on phase-transition interference reversible light reflectors,” Élektron. Prom. 5–6, 108 (1982).
3. O. B. Danilov, O. P. Mikheeva, A. I. Sidorov, V. A. Klimov, S. A. Tul’skiĭ, E. B. Shadrin, and I. L. Yachnev, “Optical limitation of mid-IR radiation in vanadium dioxide films,” Zh. Tekh. Fiz. 73, 79 (2003) [Tech. Phys. 48, 73 (2003)].
4. A. A. Bugaev and B. P. Zakharchenya, “Vanadium oxide film as a recording medium for holography,” Kvant. Elektron. (Moscow) 6, 1459 (1979) [Quantum Electron. 9, 855 (1979)].
5. O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 micrometer,” Opt. Zh. 66, No. 5, 13 (1999) [J. Opt. Technol. 66, 391 (1999)].
6. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lepine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor–metal phase transition in VO2,” J. Appl. Phys. 79, 2404 (1996).
7. A. Cavalleri, C. Toth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during ultrafast solid–solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
8. M. Rini, A. Cavalleri, R. W. Schoenlen, R. Lopez, L. C. Feldman, R. F. Haglud, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett. 30, 558 (2005).
9. R. A. Aliev and V. A. Klimov, “Effect of synthesis conditions on the metal–semiconductor phase transition in vanadium dioxide thin films,” Fiz. Tverd. Tela 46, 515 (2004) [Phys. Solid State 46, 532 (2004)].
10. R. A. Aliev, V. N. Andreev, V. M. Kapralova, V. A. Klimov, A. I. Sobolev, and E. B. Shadrin, “Effect of grain sizes on the metal–semiconductor phase transition in vanadium dioxide polycrystalline thin films,” Fiz. Tverd. Tela 48, 874 (2006) [Phys. Solid State 48, 929 (2006)].
11. E. B. Shadrin, A. V. Il’inskiĭ, A. I. Sidorov, and S. D. Khanin, “Size effects upon phase transitions in vanadium oxide nanocomposites,” Fiz. Tverd. Tela 52, 2269 (2010) [Phys. Solid State 52, 2426 (2010)].
12. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglud, “Temperature-controlled surface plasmon resonance in VO 2 nanorods,” Opt. Lett. 27, 1327 (2002).
13. O. P. Vinogradova, I. E. Obyknovennaya, A. I. Sidorov, V. A. Klimov, E. B. Shadrin, S. D. Khanin, and T. A. Khrushcheva, “Synthesis and the properties of vanadium dioxide nanocrystals in porous silicate glasses,” Fiz. Tverd. Tela 50, 734 (2008) [Phys. Solid State 50, 768 (2008)].
14. A. A. Ostrosablina and A. I. Sidorov, “Nonlinear optical properties of thick composite media with vanadium dioxide nanoparticles. I. Self-defocusing of radiation in the visible and near-IR regions,” Opt. Zh. 72, No. 7, 36 (2005) [J. Opt. Technol. 72, 530 (2005)].
15. A. I. Sidorov, O. P. Vinogradova, T. A. Khrushcheva, I. E. Obyknovennaya, G. I. Ermolaeva, and V. B. Shilov, “Optical properties of vanadium dioxide nanoparticles in nanoporous glasses,” Opt. Zh. 75, No. 1, 43 (2008) [J. Opt. Technol. 75, 33 (2008)].
16. M. Tazawa, P. Jin, and S. Tanemura, “Optical constants of V1−xWxO2 films,” Appl. Opt. 37, 1858 (1998).
17. A. P. Vinogradov, Electrodynamics of Composite Materials (Éditorial URSS, Moscow, 2001).
18. J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437 (2000).
19. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).
20. I. P. Kaminov, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396 (1974).
21. O. V. Andreeva and I. E. Obyknovennaya, “Nanoporous NPS-7 and NPS-17 arrays—possibilities of using them in an optical experiment,” Nanosis. Fiz. Khim. Matem. 1, No. 1, 37 (2010).
22. I. K. Kikoin, Tables of Physical Quantities. A Handbook (Atomizdat, Moscow, 1976).
23. V. V. Klimov, Nanoplasmonics (FIZMATLIT, Moscow, 2010).