УДК: 621.397.3
Operating sequence when noise is being filtered on distorted images
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сизиков В.С., Экземпляров Р.А. Последовательность операций при фильтрации шумов на искаженных изображениях // Оптический журнал. 2013. Т. 80. № 1. С. 39–48.
Sizikov V.S., Ekzemplyarov R.A. Operating sequence when noise is being filtered on distorted images [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 1. P. 39–48.
V. S. Sizikov and R. A. Ékzemplyarov, "Operating sequence when noise is being filtered on distorted images," Journal of Optical Technology. 80(1), 28-34 (2013). https://doi.org/10.1364/JOT.80.000028
This paper discusses questions associated with the added noise of blurred and/or defocused images. The sequence of filtering the noise on such images—before eliminating the blurring/defocusing, or after it—is analyzed. The concepts of preliminary and subsequent filtering of noise are introduced. The blurring/defocusing of a series of images was eliminated by the methods of parametric Wiener filtering and Tikhonov regularization, while the noise was filtered out by the methods of adaptive Wiener filtering and median filtering.
added noise of blurred or defocused image, preliminary and subsequent filtering of noise, elimination of blurring and defocusing
OCIS codes: 030.4280, 100.0100
References:1. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, NJ, 1990).
2. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, NJ, 2002; Tekhnosfera, Moscow, 2006).
3. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, Upper Saddle River, NJ, 2004; Tekhnosfera, Moscow, 2006).
4. V. D’yakonov and I. Abramenkova, MATLAB. Signal and Image Processing (Piter, St. Petersburg, 2002).
5. V. S. Sizikov, Inverse Applied Problems in MATLAB (Lan’, St. Petersburg, 2011).
6. V. S. Sizikov, Integral Equations and MATLAB in Problems of Tomography, Iconics, and Spectroscopy (LAP, Saarbrücken, 2011).
7. V. S. Sizikov and I. A. Belov, “Reconstruction of blurred and out-of-focus images by regularization,” Opt. Zh. 67, No. 4, 60 (2000) [J. Opt. Technol. 67, 351 (2000)].
8. V. S. Sizikov, Mathematical Methods of Processing the Results of Measurements (Politekhnika, St. Petersburg, 2001).
9. V. S. Sizikov, M. V. Rimskikh, and R. K. Mirdzhamolov, “Reconstructing blurred noisy images without using boundary conditions,” Opt. Zh. 76, No. 5, 38 (2009) [J. Opt. Technol. 76, 279 (2009)].
10. V. S. Sizikov, “The truncation–blurring–rotation technique for reconstructing distorted images,” Opt. Zh. 78, No. 5, 18 (2011) [J. Opt. Technol. 78, 298 (2011)].
11. R. A. Ékzemplyarov and V. S. Sizikov, “Eliminating blurring and defocusing of images with preliminary noise filtering in MatLab,” in Materials of the International Conference, Thirty-Nine Weeks of SPbGPU, part XIII (IMOP), ed. A. I. Rudskii (SPbGPU, St. Petersburg, 2010), pp. 223–225.
12. Yu. P. Petrov and V. S. Sizikov, Well-Posed, Ill-Posed, and Intermediate Problems with Applications (VSP, Leiden, 2005).
13. A. V. Gorshkov, “Improving the resolution of images when processing the data of a physical experiment and imposing an unknown instrumental function using the REIMAGE software package,” Prib. Tekh. Eksp. No. 2, 68 (1995).
14. M. Donatelli, C. Estatico, A. Martinelli, and S. Serra-Capizzano, “Improved image deblurring with anti-reflective boundary conditions and re-blurring,” Inverse Probl. 22, 2035 (2006).
15. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer, Dordrecht, 1996).
16. A. F. Verlan’ and V. S. Sizikov, Integral Equations: Methods, Algorithms, Programs (Naukov Dumka, Kiev, 1986).
17. Yu. E. Voskobonikov and V. A. Litasov, “Stable algorithm for reconstructing an image with an inaccurately specified spread function,” Avtometriya 42, No. 6, 3 (2006).
18. V. N. Ostrikov and O. V. Plakhotnikov, “Identifying the point-spread function of an observation channel from a calibrating image by the method of least squares,” Opt. Zh. 73, No. 2, 26 (2006) [J. Opt. Technol. 73, 91 (2006)].
19. D. D. Zakharov, V. S. Sizikov, V. V. Shempliner, and D. S. Shchekotin, “New methods for eliminating artefacts on tomographic and other images,” Nauchno-Tekhn. Vest. ITMO 32, 138 (2006).