ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.44.621 373 826

Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal

For Russian citation (Opticheskii Zhurnal):

Фофанов Я.А., Плешаков И.В., Кузьмин Ю.И. Лазерное поляризационно-оптическое детектирование процесса намагничивания магнитоупорядоченного кристалла // Оптический журнал. 2013. Т. 80. № 1. С. 88–93.

 

Fofanov Ya.A., Pleshakov I.V., Kuzmin Yu.I. Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 1. P. 88–93.

For citation (Journal of Optical Technology):

Ya. A. Fofanov, I. V. Pleshakov, and Yu. I. Kuz’min, "Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal," Journal of Optical Technology. 80(1), 64-67 (2013). https://doi.org/10.1364/JOT.80.000064

Abstract:

This paper demonstrates the use of laser radiation with deep polarization modulation as a method of investigating a magnetically ordered substance. Using a model sample—single-crystal iron borate—as an example, it is shown that this technique can be used to study magnetization processes. A qualitative picture is given of the formation of the polarization-optical response in the sample being magnetized, and the corresponding experimental characteristics are obtained. Sudden changes of the response are recorded that are associated with abrupt reconstruction of the domain structure. The approach thus developed can be useful in studies of the domain structure and of other features of the structure of materials for optoelectronics, nonlinear and magnetooptics, laser engineering, etc.

Keywords:

laser, polarization-optical analysis, optoelectronics, optical material science, magnetooptics, iron borate

Acknowledgements:

This work was partially supported by Grant P-03 of a program of the Presidium of the Russian Academy of Sciences.

OCIS codes: 260.0260, 250.0250, 120.0120, 230.0230, 210.0210

References:

1. S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761 (1969).
2. J. Badoz, M. Billardon, J. C. Canit, and M. F. J. Russel, “Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator,” Optics (Paris) 8, 373 (1977).
3. Ya. A. Fofanov, “Threshold sensitivity in optical measurements with phase modulation,” Proc. SPIE 1811, 413 (1992).
4. I. M. Sokolov and Ya. A. Fofanov, “Differential recording of polarization-modulated optical signals,” Nauch. Prib. 18, No. 1, 16 (2008).
5. Y. Shindo, K. Mizuno, M. Sudani, H. Hayakawa, Y. Ohmi, N. Sakayanagi, and N. Takeuchi, “New polarization-modulation spectrometer for simultaneous circular dichroism and optical rotatory dispersion measurements. II. Design, analysis, and evaluation of prototype model,” Rev. Sci. Instrum. 60, 3633 (1989).
6. O. Acher, E. Bigan, and B. Drevillon, “Improvements of phase-modulated ellipsometry,” Rev. Sci. Instrum. 60, 65 (1989).
7. Y. Shindo, K. Kani, J. Horinaka, R. Kuroda, and T. Harada, “The application of polarization modulation method to investigate the optical homogeneity of polymer films,” J. Plast. Film Sheeting 17, No. 2, 164 (2001).
8. K. D. Osborn, M. K. Singh, R. J. B. Urbauer, and C. K. Johnson, “Maximum-likelihood approach to single-molecule polarization modulation analysis,” Chem. Phys. Chem. 4, 1005 (2003).
9. V. K. Gupta, J. A. Kornfield, A. Ferencz, and G. Wegner, “Controlling molecular order in ‘Hairy-Rod’ Langmuir-Blodgett films: A polarization-modulation microscopy study,” Science 265, No. 5174, 940 (1994).
10. I. M. Sokolov and Ya. A. Fofanov, “Investigations of the small birefringence of transparent objects by strong phase modulation of probing laser radiation,” J. Opt. Soc. Am. A 12, 1579 (1995).
11. Ya. A. Fofanov, I. I. Afanas’ev, and S. N. Borozdin, “Structural birefringence in crystals of optical fluorite,” Opt. Zh. 65, No. 9, 22 (1998) [J. Opt. Technol. 65, 700 (1998)].
12. Ya. A. Fofanov, I. V. Pleshakov, and I. M. Sokolov, “Detection of nonsteady-state polarization responses in the optical and radio ranges,” Nauch. Prib. 20, No. 2, 3 (2010).
13. R. Diehl, W. Jantz, B. I. Nolang, and W. Wettling, “Growth and properties of iron borate, FeBO3,” Curr. Top. Mater. Sci. 11, 241 (1984).
14. A. J. J. Kurtzig, “Faraday rotation in birefringent crystals,” Appl. Phys. 42, 3494 (1971).
15. N. M. Salanski, E. A. Glozman, and V. N. Seleznev, “NMR and the domain structure in single crystal FeBO3,” Zh. Eksp. Teor. Fiz. 68, 1413 (1975) [Sov. Phys. JETP 41, 704 (1975)].
16. G. B. Scott, “Magnetic domain properties of FeBO3,” J. Phys. D 7, 1574 (1974).
17. V. M. Rudyak, “The Barkhausen effect,” Usp. Fiz. Nauk 101, 429 (1970) [Sov. Phys. Usp. 13, 461 (1971)].
18. A. L. Andreev, I. N. Kompanets, T. B. Andreeva, and Yu. P. Shumkina, “Dynamics of domain wall motion in ferroelectric liquid crystals in an electric field,” Fiz. Tverd. Tela 51, 2275 (2009) [Phys. Solid State 51, 2415 (2009)].
19. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics (Fizmatlit, Moscow, 2004), p. 473.
20. N. R. Ivanov, N. A. Tikhomirova, A. V. Ginzberg, S. P. Chumakova, É. I. Eknadiosyants, V. Z. Borodin, A. N. Pinskaya, V. A. Babanskikh, and V. A. D’yakov, “Domain structure of KTiOPO4,” Kristallografiya 39, 659 (1994) [Crystallogr. Rep. 39, 593 (1994)].
21. I. M. Sokolov and Ya. A. Fofanov, “Sub-Poissonian single-mode lasing in a semiconductor laser with an external cavity,” Opt. Zh. 70, No. 1, 46 (2003) [J. Opt. Technol. 70, 38 (2003)].