ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Multiphoton generation of electron–hole pairs accompanying the resonance optical Stark effect

For Russian citation (Opticheskii Zhurnal):

Перлин Е.Ю., Бондарев М.А. Многофотонная генерация электронно-дырочных пар при резонансном оптическом штарк-эффекте // Оптический журнал. 2013. Т. 80. № 11. С. 24–31.

 

Perlin E. Yu., Bondarev M. A. Multiphoton generation of electron–hole pairs accompanying the resonance optical Stark effect [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 11. P. 24–31.

For citation (Journal of Optical Technology):

M. A. Bondarev and E. Yu. Perlin, "Multiphoton generation of electron–hole pairs accompanying the resonance optical Stark effect," Journal of Optical Technology. 80(11), 661-666 (2013). https://doi.org/10.1364/JOT.80.000661

Abstract:

General expressions obtained earlier for nonlinear photogeneration rates of electron–hole pairs (EHPs) under conditions of n-photon–one-photon resonance on adjacent interband transitions are used to analyze manifestations of the resonance optical Stark effect in the case n=4. Because of the appearance of new Van Hove singularities in the electronic band spectrum reconstructed in the field of a strong electromagnetic wave, the multiphoton EHP-generation rate W<sup>(4)</sup> is a nonmonotonic function of radiation intensity j and includes a region of extremely rapid growth, in which a small change of j causes W<sup>(4)</sup> to increase by several orders of magnitude.

Keywords:

multiphoton transitions, wide-band crystals, optical strike effect, rearrangement of the electronic zone spectrum, van hov singularities

References:

1. S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695 (2004).
2. B. S. Sharma and K. E. Riekhof, “Laser-induced photoconductivity in silicate glasses by multiphoton excitation, a precursor of dielectric breakdown and mechanical damage,” Can. J. Phys. 45, 3781 (1967).
3. V. A. Kovarskii and E. Yu. Perlin, “Multi-photon interband optical transitions in crystals,” Phys. Status Solidi B 45, 47 (1971).
4. A. Schmid, P. Kelly, and P. Braunlich, “Optical breakdown in alkali halides,” Phys. Rev. B 16, 4569 (1977).
5. S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
6. S. C. Jones, X. A. Shen, and R. F. Braunlich, “Mechanism of prebreakdown nonlinear energy deposition from intense photon field at 532 nm in NaCl,” Phys. Rev. B 35, 894 (1987).
7. X. A. Shen, S. C. Jones, and P. F. Braunlich, “Four-photon absorption cross section in potassium bromide at 532 nm,” Phys. Rev. B 36, 2831 (1987).
8. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015 (2005).
9. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. H. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectric,” Phys. Rev. Lett. 80, 4076 (1998).
10. I. N. Zavestovskaya, P. G. Eliseev, O. N. Krokhin, and N. A. Men’kova, “Analysis of the nonlinear absorption mechanisms in ablation of transparent materials by high-intensity and ultrashort laser pulses,” Appl. Phys. A 92, 903 (2008).
11. B. S. Sharma and K. E. Riekhof, “Laser-induced dielectric breakdown and mechanical damage in silicate glasses,” Can. J. Phys. 48, 1178 (1970).
12. V. E. Gruzdev, “Photoionization rate in wide band-gap crystals,” Phys. Rev. B 75, 205106 (2007).
13. V. M. Galitskiı˘, S. P. Goreslavskiı˘, and V. F. Elesin, “Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz. 57, 207 (1969) [Sov. Phys. JETP 30, 117 (1969)].
14. E. Yu. Perlin and V. A. Kovarskiı˘, “The effect of laser resonance radiation on the intrinsic absorption of light in crystals,” Fiz. Tverd. Tela (Leningrad) 12, 3105 (1970) [Sov. Phys. Solid State 12, 2512 (1970)].
15. Y. Yacoby, “Optical double resonance in solids,” Phys. Rev. B 1, 1666 (1970).
16. N. Tzoar and J. I. Gersten, “Theory of electronic band structure in intense laser fields,” Phys. Rev. B 12, 1132 (1975).
17. V. M. Galitskiı˘, S. P. Goreslavskiı˘, and V. F. Elesin, “Electric and magnetic properties of a semiconductor in the field of a strong electromagnet,” Zh. Eksp. Teor. Fiz. 57, 207 (1969) [Sov. Phys. JETP 30, 117 (1970)].
18. Yu. I. Balkareı˘ and É. M. Epshteı˘n, “On the quasi-energetic spectrum of a semiconductor in the field of a strong electromagnetic wave,” Fiz. Tverd. Tela (Leningrad) 17, 2312 (1975) [Sov. Phys. Solid State 17, 1529 (1975)].
19. E. Yu. Perlin, “Optical Stark effect accompanying transient double resonance in semiconductors,” Zh. Eksp. Teor. Fiz. 105, 186 (1994) [JETP 78, 98 (1994)].
20. E. Yu. Perlin and A. V. Fedorov, “Two-photon absorption monitored by the resonance optical Stark effect in crystals and quantum nanostructures,” Opt. Spektrosk. 78, 445 (1995) [Opt. Spectrosc. 78, 400 (1995)].
21. E. Yu. Perlin and A. V. Fedorov, “Critical points of the electron band spectrum in the field of an electromagnetic wave,” Fiz. Tverd. Tela (Leningrad) 37, 1463 (1995) [Phys. Solid State 37, 792 (1995)].
22. E. Yu. Perlin and A. V. Fedorov, “Quasi-steady-state optical Stark effect accompanying double interband resonance in anisotropic semiconductors,” Izv. Ross. Akad. Nauk Ser. Fiz. 60, No. 6, 164 (1996).
23. E. Yu. Perlin and D. I. Stasel’ko, “Nonlinear excitation of AgBr nanocrystals in the field of short light pulses,” Opt. Spektrosk. 88, 57 (2000) [Opt. Spectrosc. 88, 50 (2000)].
24. E. Yu. Perlin and D. I. Stasel’ko, “Multiphoton transitions and the resonant optical Stark effect in AgBr nanocrystals,” Opt. Spektrosk. 98, 944 (2005) [Opt. Spectrosc. 98, 844 (2005)].

25. A. V. Ivanov and E. Yu. Perlin, “Prebreakdown excitation of crystals accompanying double multiphoton resonance: I. Probabilities of interband transitions,” Opt. Spektrosk. 106, 756 (2009) [Opt. Spectrosc. 106, 677 (2009)].
26. A. V. Ivanov and E. Yu. Perlin, “Prebreakdown excitation of crystals at double multiphoton resonance: II. Analysis of the effects of transformation of electronic band spectrum,” Opt. Spektrosk. 106, 764 (2009) [Opt. Spectrosc. 106, 685 (2009)].
27. M. A. Bondarev, A. V. Ivanov, and E. Yu. Perlin, “Prebreakdown excitation of crystals at double multiphoton resonance: III. Forbidden transitions,” Opt. Spektrosk. 112, 115 (2012) [Opt. Spectrosc. 112, 106 (2012)].
28. M. A. Bondarev, E. Yu. Perlin, and A. V. Ivanov, “Multiphoton absorption monitored by the resonance optical Stark effect in crystals,” Opt. Spektrosk. 115, No. 6 (2013) [in press].
29. A. M. Basharov, Photonics. The Method of Unitary Transformation in Nonlinear Optics (MIFI, Moscow, 1990).
30. A. M. Basharov, “The effective Hamiltonian method in nonlinear and quantum optics,” Teor. Fiz. 9, 7 (2008).
31. L. A. Hemstreet and C. Y. Fong, “Electronic band structure and optical properties of 3C-SiC, BP, and BN,” Phys. Rev. B 6, 1464 (1972).
32. Y. Zhang, N. A. W. Holzwarth, and R. T. Williams, “Electronic band structures of the scheelite materials CaMoO4 , CaWO4 , PbMoO4, and PbWO4 ,” Phys. Rev. B 57, 12738 (1998)