ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 539.23

Transient intraband absorption of light by semiconductor nanorods

For Russian citation (Opticheskii Zhurnal):

Леонов М.Ю., Орлова А.О., Баранов А.В., Рухленко И.Д., Гунько Ю.К., Федоров А.В. Нестационарное внутризонное поглощение света полупроводниковыми наностержнями // Оптический журнал. 2013. Т. 80. № 11. С. 7–15.

 

Leonov M. Yu., Orlova A. O., Baranov A. V., Fedorov A. V. , RukhlenkoI. D., and Gun’koYu. K. Transient intraband absorption of light by semiconductor nanorods [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 11. P. 7–15.

 

For citation (Journal of Optical Technology):

M. Yu. Leonov, A. O. Orlova, A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Yu. K. Gun’ko, "Transient intraband absorption of light by semiconductor nanorods," Journal of Optical Technology. 80(11), 648-654 (2013).  https://doi.org/10.1364/JOT.80.000648

Abstract:

A unified approach based on the reduced-density-matrix formalism has been used to develop a theory of intraband energy absorption of probe pulses, induced by pump pulses in semiconductor nanorods in the shape of parallelipipeds or cylinders. The conditions are determined under which the dependence of the absorbed energy of the probe pulses on the delay time with respect to the pump pulses when intraband transitions occur is described by one or two exponential functions with exponents proportional to the energy-relaxation rates of the states of the electronic subsystem of the nanorods. It is shown that the transient spectroscopy of intraband absorption makes it possible to determine the relaxation rates of the energy of the electron states of the nanorods.

Keywords:

semiconductor nanorods, pump-probe spectroscopy, energy relaxation rate

References:
1C. R. Wolf, K. Thonke, and R. Sauer, “Single-electron transistors based on self-assembled silicon-on-insulator quantum dots,” Appl. Phys. Lett. 96,
142108 (2010).
2E. U. Rafailov, M. A. Cataluna, and E. A. Avrutin, Ultrafast Lasers Based on Quantum Dot Structures: Physics and Devices (Wiley-VCH, Weinheim,
2011), p. 272.
3A. J. Nozik, “Nanoscience and nanostructures for photovoltaics and solar fuels,” Nano Lett. 10, 2735 (2010).
4L. Dusanowski, A. Golnik, M. Syperek, M. Nawrocki, G. Sek, J. Misiewicz, W. T. Shlereth, C. Schneider, S. Hofling, M. Kamp, and A. Forchel, “Single-photon emission in the red spectral range from a GaAs-based self-assembled quantum dot,” Appl. Phys. Lett. 101, 103108 (2012).
5D. Press, T. Ladd, B. Zhang, and Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature 456, 218 (2008).
6V. V. Vodnik, Z. Saponjic, J. V. Dzunuzovic, U. Bogdanovic, M. Mitric, and J. Nedeljkovic, “Anisotropic silver nanoparticles as filler for the formation of hybrid nanocomposites,” Mater. Res. Bull. 48, No. 1, 52 (2013).
7C. Kolper, M. Sabathil, F. Romer, M. Mandl, M. Strassburg, and B. Witzigmann, “Core-shell InGaN nanorod light-emitting diodes: electronic and optical device properties,” Phys. Status Solidi A 209, 2304 (2012).
8Y. T. Lim, J. Y. Son, and J. S. Rhee, “Vertical ZnO nanorod array as an effective hydrogen gas sensor,” Ceram. Int. 39, 887 (2013).
9A. V. Baranov, V. Davydov, A. V. Fedorov, H. W. Ren, S. Sugou, and Y. Masumoto, “Coherent control of stress-induced InGaAs quantum dots by
means of phonon-assisted resonant photoluminescence,” Phys. Status Solidi B 224, 461 (2001).
10A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Coherent control of the quasi-elastic resonant secondary emission: semiconductor quantum dots,” Opt. Spektrosk. 92, 797 (2002) [Opt. Spectrosc. 92, 732 (2002)].
11A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Coherent control of optical-phonon-assisted resonance secondary emission in semiconductor quantum dots,” Opt. Spektrosk. 93, 56 (2002) [Opt. Spectrosc. 93, 52 (2002)].
12A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Coherent control of thermalized luminescence in semiconductor quantum dots,” Opt. Spektrosk. 93, 604 (2002) [Opt. Spectrosc. 93, 555 (2002)].
13M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, “Transient interband light absorption by quantum dots: degenerate pumpprobe spectroscopy,” Opt. Spektrosk. 109, 358 (2010) [Opt. Spectrosc. 109, 358 (2010)].
14M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, “Transient Interband light absorption by quantum dots: nondegenerate case of pumpprobe spectroscopy,” Opt. Spektrosk. 110, 24 (2011) [Opt. Spectrosc. 110, 24 (2011)].
15M. Yu. Leonov, A. V. Baranov, and A. V. Fedorov, “Transient intraband light absorption by quantum dots: pump-probe spectroscopy,” Opt. Spektrosk. 111, 798 (2011) [Opt. Spectrosc. 111, 798 (2011)].
16S. Sanguinetti, M. Guzzi, E. Grilli, M. Gurioli, L. Seravalli, P. Frigeri, S. Franchi, M. Capizzi, S. Mazzuccato, and A. Polimeni, “Effective phonon bottleneck in the carrier thermalization of InAs/GaAs quantum dots,” Phys. Rev. B 78, 085313 (2008).
17A. V. Fedorov, A. V. Baranov, and Y. Masumoto, “Acoustic phonon problem in nanocrystal–dielectric-matrix systems,” Solid State Commun. 122, No. 3–4, 139 (2002).
18T. Inoshita and H. Sakaki, “Electron relaxation in a quantum dot: significance of multiphonon processes,” Phys. Rev. B 46, 7260 (1992).
19T. Inoshita and H. Sakaki, “Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots,” Phys. Rev. B 56, R4355 (1997).
20X. Li, H. Nakayama, and Y. Arakawa, “Phonon bottleneck in quantum dots: role of lifetime of the confined optical phonons,” Phys. Rev. B 59, 5069 (1999).
21A. V. Baranov, A. V. Fedorov, I. D. Rukhlenko, and Y. Masumoto, “Intraband carrier relaxation in quantum dots embedded in doped heterostructures,” Phys. Rev. B 68, 205318 (2003).
22A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and Y. Masumoto, “New many-body mechanism of intraband carrier relaxation in quantum dots embedded in doped heterostructures,” Solid State Commun. 128, No. 6–7, 219 (2003).
23A. V. Fedorov and A. V. Baranov, “Relaxation of charge carriers in quantum dots with the involvement plasmon-phonon modes,” Fiz. Tekh. Poluprovodn. 38, 1101 (2004) [Semiconductors 38, 1065 (2004)].
24A. V. Fedorov and A. V. Baranov, “Intraband carrier relaxation in quantum dots mediated by surface plasmon-phonon excitations,” Opt. Spektrosk. 97,
63 (2004) [Opt. Spectrosc. 97, 56 (2004)].
25A. V. Fedorov, A. V. Baranov, I. D. Rukhlenko, and S. V. Gaponenko, “Enhanced intraband carrier relaxation in quantum dots due to the effect of plasmon-LO-phonon density of states in doped heterostructures,” Phys. Rev. B 71, 195310 (2005).
26P. Guyot-Sionnest, B. Wehrenberg, and D. Yu, “Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands,” J. Chem. Phys. 123, 074709 (2005).
27P. C. Sercel, “Multiphonon-assisted tunneling through deep levels: a rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures,”
Phys. Rev. B 51, 14532 (1995).
28D. F. Schroeter, D. J. Griffiths, and P. C. Sercel, “Defect-assisted relaxation in quantum dots at low temperature,” Phys. Rev. B 54, 1486 (1996).
29M. I. Vasilevskiy, E. V. Anda, and S. S. Makler, “Electron-phonon interaction effects in semiconductor quantum dots: a nonperturbative approach,” Phys. Rev. B 70, 035318 (2004).
30G. A. Narvaez, G. Bester, and A. Zunger, “Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: efficient P → S Auger re-
laxation of electrons,” Phys. Rev. B 74, 075403 (2006).
31S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Resonant energy transfer in quantum dots: frequency-domain luminescent spectroscopy,” Phys. Rev. B 78, 125311 (2008).
32S. Yu. Kruchinin, A. V. Fedorov, A. V. Baranov, T. S. Perova, and K. Berwick, “Double quantum dot photoluminescence mediated by incoherent reversible energy transport,” Phys. Rev. B 81, 245303 (2010)