ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 528.7:629.78:551.5

Problems of climate as a problem of optics

For Russian citation (Opticheskii Zhurnal):
Авакян С.В. Проблемы климата как задача оптики // Оптический журнал. 2013. Т. 80. № 11. С. 98–104.   Avakyan S. V. Problems of climate as a problem of optics [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 11. P. 98–104.
 
For citation (Journal of Optical Technology):

S. V. Avakyan, "Problems of climate as a problem of optics," Journal of Optical Technology. 80(11), 717-721 (2013).  https://doi.org/10.1364/JOT.80.000717

Abstract:

This paper discusses the causes of present-day climate changes, obtained at S. I. Vavilov State Optical Institute in recent years. The main conclusions relate to the relationship of the contribution of natural sources (solar-geomagnetic activity) and anthropogenic sources of action on the weather and climate. It is shown that the determining mechanisms for controlling the weather-climatic characteristics are the processes of aerospace physical optics. The main source of the global warming observed in recent decades is an increase in solar activity on a secular scale, the chief channel of action of solar-geomagnetic activity is the control of the condensation-cluster mechanism of cloud nucleation, and the strongest energy effect is the regulation of the thermal radiation fluxes of the underlying surface by optically thin clouds. The greenhouse effect based on carbon-containing gases makes an insignificant contribution to global warming.

Keywords:

climate change, global warming, cloud formation, radiation balance of the earth, optically thin clouds, greenhouse effect, microwave radiation of the ionosphere, forecasting weather and climatic characteristics

References:

1. S. V. Avakyan, A. I. Vdovin, and V. F. Pustarnakov, Ionizing and Penetrating Radiation in Near-Earth Space. Handbook (Gidrometeoizdat, St. Petersburg, 1994).
2. S. V. Avakyan, R. N. Il’in, V. M. Lavrov, and G. N. Ogurtsov, Collision Processes and Excitation of the Ultraviolet Emission from Planetary Atmospheric Gases. Handbook of Cross Sections, S. V. Avakyan, ed. (Gordon & Breach, London, 1998).
3. S. V. Avakyan, R. N. Il’in, V. M. Lavrov, and G. N. Ogurtsov, Cross Sections of Processes of Ionization and Excitation of UV Radiation Accompanying the Collision of Electrons, Ions, and Photons with Atoms and Molecules of Atmospheric Gases. Handbook (GOI im. S. I. Vavilova, FTI im. A. F. Ioffe, St. Petersburg, 2000).
4. S. V. Avakyan, “The role of processes with a high threshold energy in the physics of the upper atmospheres of the planets,” Opt. Zh. 72, No. 8, 33 (2005) [J. Opt. Technol. 72, 602 (2005)].
5. S. V. Avakyan, “The physics of solar-terrestrial couplings: results, problems, and new approaches,” Geomagn. Aeron. 48, No. 4, 417 (2008).
6. S. V. Avakyan and N. A. Voronin, “Possible mechanisms for the influence of heliogeophysical activity on the biosphere and the weather,” Opt. Zh. 73, No. 4, 78 (2006) [J. Opt. Technol. 73, 281 (2006)].
7. S. V. Avakyan and N. A. Voronin, “The role of space and ionospheric perturbations in global climate changes and pipeline corrosion,” Issled. Zemli Kosmosa No. 3, 14 (2011).
8. S. V. Avakyan and N. A. Voronin, “The role of space and ionospheric disturbances in global climate change and pipeline corrosion,” Izv. Atmosf. Oceanic Phys. 47, 1143 (2011).
9. S. V. Avakyan, “Problems of climate as a problem of solar-terrestrial physics,” Report Delivered at the First Plenary Session of the All-Russia Conference on Solar Activity and the Weather of Global and Regional Climate Changes, Irkutsk, Institute of Solar-Terrestrial Physics, SO RAN, June 19, 2012, in Collection of Scientific Works on Solar-Terrestrial Physics, No. 21, 2012, pp. 18–27.
10. S. V. Avakyan, E. P. Andreev, I. M. Afanas’ev, N. B. Leonov, A. V. Savushkin, A. E. Serova, and N. A. Voronin, “Creating of the permanent space patrol of ionizing solar radiation,” Proc. SPIE 4853, 600 (2002).
11. S. V. Avyakyan and N. A. Voronin, “Method of reducing the corrosion rate of the metal of a steel tube of pipeline transport,” Russian Federation Patent No. 2,447,425, Ofitsi. Byull. FSIS Izobret. Polez. Modeli No. 10 (2012).
12. S. V. Avyakyan, “The role of solar activity in global warming,” Vestnik Ross. Akad. Nauk 83, 425 (2013).
13. V. G. Bondur, S. A. Pulinets, and G. A. Kim, “On the role of variations of galactic cosmic rays in tropic cyclogenesis, using hurricane Katrina as an example,” Dok. Ross. Akad. Nauk 422, No. 2, 244 (2008).
14. V. L. Krauklis, G. A. Nikol’skiı˘, M. M. Safronova, and É. O. Shul’ts, “On the conditions for the appearance of anomalous features of aerosol attenuation of UV radiation under high transparency of the atmosphere,” Opt. Atmos. 3, 227 (1990).
15. G. A. Nikol’skiı˘ and É. O. Shul’ts, “Spectrotemporal variations of the residual attenuation in the near-UV,” Opt. Atmos. 4, 961 (1991).
16. V. S. Troitskiı˘, A. M. Starodubtsev, and L. N. Bondar’, “Search for sporadic radio radiation from space on centimeter and decimeter waves,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 323 (1973).
17. S. V. Avakyan, N. A. Voronin, and A. E. Serova, “Role of Rydberg atoms and molecules in the upper atmosphere,” Geomagn. Aeron. 37, No. 3, 99 (1997).
18. S. M. Grach, V. M. Fridman, L. M. Lifshits, T. S. Podstrigach, E. N. Sergeev, and S. D. Snegirev, “UHF electromagnetic emission stimulated by HF pumping of the ionosphere,” Ann. Geophys. 20, 1687 (2002).
19. D. R. Bates, “Electron-ion recombination in an ambient molecular gas,” J. Phys. B 14, 3525 (1981).
20. K. N. Liou and R. L. Gebhart, “Numerical experiments on the thermal equilibrium temperature in cirrus cloudy atmospheres,” J. Meteorol. Soc. Jpn. 60, 570 (1982).
21. S. V. Avakyan and N. A. Voronin, “Radio-optical and optical mechanisms of the influence of space factors on global climate warming,” Opt. Zh. 77, No. 2, 90 (2010) [J. Opt. Technol. 77, 150 (2010)].
22. M. Lockwood and C. Fröhlich, “Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature,” Proc. R. Soc. A 463, 2447 (2007).
23. V. A. Golovko, “Global redistribution of the components of the radiation balance of the earth,” Issled. Zemli iz Kosmosa No. 5, 3 (2003).
24. M. Wild, “Enlightening global dimming and brightening,” Bull. Am. Meteorol. Soc. No. 1, 27 (2012).
25. M. Ogurtsov, M. Lindholm, and R. Jalkanen, “Background solar irradiance and the climate of the Earth in the end of the 20th century,” Atmos. Climate Sci. 2, 191 (2012).
26. P. R. Goode and E. Pallé, “Shortwave forcing of the Earth’s climate: modern and historical variations in the Sun’s irradiance and the Earth’s reflectance,” J. Atmos. Sol.-Terr. Phys. 69, 1556 (2007).
27. R. T. Pinker, B. Zhang, and E. G. Dutton, “Do satellites detect trends in surface solar radiation?” Science 308, No. 5723, 850 (2005).
28. A. V. Chernokul’skiı˘ and I. I. Mokhov, “Comparative analysis of the characteristics of global and zonal cloudiness from various satellite and terrestrial observations,” Issled. Zemli iz Kosmosa No. 3, 12 (2010).
29. R. Vautard, P. Yiou, and G. J. van Oldenborgh, “Decline of fog, mist, and haze in Europe over the past 30 years,” Nat. Geosci. 2, 115 (2009).
30. S. P. Gorshkov, “Causes of global warming and the strength of climate instability. Possibilities of opposition not reflected in the scenario of the Kyoto protocol,” in Stable Development: Problems and Prospects No. 4. Rational Resource Management: International Programs, Russian and Foreign Experience (Izd. KMK, Moscow, 2010), pp. 82–103.