УДК: 535.375.5+535.016
Interpretation of the spectra of surface-enhanced hyper-Raman scattering of symmetric molecules, based on dipole–quadrupole theory
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Полуботко А.М., Челибанов В.П.Интерпретация спектров поверхностно усиленного иперкомбинационного рассеяния симметричных молекул на основе дипольно-квадрупольной теории // Оптический журнал. 2013. Т. 80. № 12. С. 5–16.
Polubotko A. M., Chelibanov V. P. Interpretation of the spectra of surface-enhanced hyper-Raman scattering of symmetric molecules, based on dipole–quadrupole theory [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 12. P. 5–16.
A. M. Polubotko and V. P. Chelibanov, "Interpretation of the spectra of surface-enhanced hyper-Raman scattering of symmetric molecules, based on dipole–quadrupole theory," Journal of Optical Technology. 80(12), 723-730 (2013). https://doi.org/10.1364/JOT.80.000723.
The spectra of enhanced hyper-Raman scattering (Hyper RS) by symmetrical molecules studied in the literature are analyzed on the basis of the dipole–quadrupole theory of surface-enhanced Hyper RS of light and the concept of the existence of a strong quadrupole interaction of light with the molecules. It is shown that the theory predicts the appearance of forbidden lines in the enhanced Hyper-RS spectra (in molecules with sufficiently high symmetry), caused by totally symmetric vibrations and transforming according to a single irreducible representation. A consideration of the experimental spectra of phenazine, pyrazine, and pyridine confirmed the existence of the indicated forbidden lines and made it possible to explain the features of the spectra of these molecules. A critique is presented of the theoretical analysis of the enhanced Hyper-RS spectra of trans-1,2-bis(4-pyridyl)ethylene and crystal violet carried out by other authors.
strong quadrupolar interaction, enhanced hypercombination scattering, sampling rules, forbidden lines
OCIS codes: 300.6170, 300.6390, 300.6450, 300.6490, 290.5820, 290.5825, 290.5860, 290.5880, 240.5770
References:1. A. M. Polubotko, The Dipole-Quadrupole Theory of Surface-Enhanced Raman Scattering (Nova Science Publishers, New York, 2009).
2. W.-H. Li, X.-Y. Li, and N.-T. Yu, Chem. Phys. Lett. 327, 153 (2000).
3. T. J. Durnick and S. C. Wait, Jr., J. Mol. Spectrosc. 42, 211 (1972).
4. W.-H. Li, X.-Y. Li, and N.-T. Yu, Chem. Phys. Lett. 305, 303 (1999).
5. X.-Y. Li, Q.-J. Huang, V. I. Petrov, Y.-T. Xie, Q. Luo, X. Yu, and Y.-J. Yan, J. Raman Spectrosc. 36, 555 (2005).
6. J. T. Golab, J. R. Sprague, K. T. Carron, G. C. Schatz, and R. P. Van Duyne, J. Chem. Phys. 88, 7942 (1988).
7. W.-H. Yang and G. C. Schatz, J. Chem. Phys. 97, 3831 (1992).
8. I. Pockrand, Surface Enhanced Raman Vibrational Studies at Solid/Gas Interfaces, Vol. 104 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1984).
9. W.-H. Yang, J. Hulteen, G. C. Schatz, and R. P. Van Duyne, J. Chem. Phys. 104, 4313 (1996).
10. L. Angelony, G. Smulevich, and M. P. Marzocchi, J. Raman Spectrosc. 8, 305 (1979).
11. S. Schneider, G. Brehm, and P. Freunscht, Phys. Status Solidi B 189, 37 (1995).
12. M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, J. Phys. Chem. C 112, 20295 (2008).
13. K. Ikeda, M. Takase, Y. Sawai, H. Nabika, K. Murakoshi, and K. Uosaki, J. Chem. Phys. 127, 111103 (2007).