УДК: 531.7.082.5:535.42/44
Noise synchronization of radiation in short-range optical detection-and-ranging systems
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лебедько Е.Г., Серикова М.Г. Шумовая синхронизация излучения в системах ближней оптической локации // Оптический журнал. 2013. Т. 80. № 12. С. 60–64.
Lebed’ko E. G., Serikova M. G. Noise synchronization of radiation in short-range optical detection-and-ranging systems [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 12. P. 60–64.
E. G. Lebed’ko and M. G. Serikova, "Noise synchronization of radiation in short-range optical detection-and-ranging systems," Journal of Optical Technology. 80(12), 761-764 (2013). https://doi.org/10.1364/JOT.80.000761
In short-range optical detection-and-ranging systems in which the maximum distances to the objects are 10–15 m, it becomes possible to reduce the required radiation energy or the size of the optical receiver system while maintaining the specified detection-probability characteristics by noise synchronization of the emission time. The signal in this case is received on the interval between noise bursts—i.e., on a time interval in which a false alarm is less probable. This article presents a statistical analysis of the probability distributions of the noise intervals, used as the basis for defining the principle by which the detection-probability characteristics are calculated. It is shown that, when the threshold/noise ratio equals unity, the radiation energy required to ensure a skip probability equal to 0.01 is almost a factor of 3 less than in classical detection, and, when the threshold/noise ratio equals 2, it will be a factor of 23 less.
optical location, optimal reception, distribution of intervals between emissions of a random process, energy gain
OCIS codes: 280.0280; 000.5490
References:1. B. R. Levin, Theoretical Principles of Statistical Radio Engineering, Vol. 1 (Sov. Radio, Moscow, 1966).
2. Ya. A. Fomin, Theory of Bursts of Random Processes (Svyaz’, Moscow, 1980).
3. V. I. Tikhonov, Bursts of Random Processes (Nauka, Moscow, 1970).
4. E. G. Lebed’ko, L. F. Porfir’ev, and F. I. Khaı˘tun, Theory and Calculation of Pulsed and Digital Optoelectronic Systems (Mashinostroenie, Leningrad, 1984).
5. E. G. Lebed’ko, G. A. Aver’yanov, A. S. Egorov, A. M. Romanov, and F. I. Khaı˘tun, “Determining the differential laws of the distribution of the intervals between the bursts of a random process,” Prib. Tekhnika Éksp. No. 6, 28 (1971).
6. E. G. Lebed’ko, Theoretical Principles of Information Transport (Lan’, Moscow, 2011).
7. E. G. Lebed’ko, Optical Detection-and-Ranging Systems, Part 2 (SPbNIU ITMO, St. Petersburg, 2012).