УДК: 538.971, 539.184
Deferred action of illumination on the relaxation of a granular silver film when it is thermally annealed
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Вартанян Т.А., Леонов Н.Б., Пржибельский С.Г. Отложенное действие освещения на релаксацию гранулированной серебряной пленки при термическом отжиге // Оптический журнал. 2013. Т. 80. № 2. С. 24–28.
Vartanyan T.A., Leonov N.B., Przhibelskiy S.G. Deferred action of illumination on the relaxation of a granular silver film when it is thermally annealed [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 2. P. 24–28.
T. A. Vartanyan, N. B. Leonov, and S. G. Przhibel’skiĭ, "Deferred action of illumination on the relaxation of a granular silver film when it is thermally annealed," Journal of Optical Technology. 80(2), 88-90 (2013). https://doi.org/10.1364/JOT.80.000088
It has been detected that UV radiation in the 300–400 nm wavelength interval affects the rate and final result of subsequent thermal annealing of a thin silver film on a sapphire substrate. Whereas the annealing of unirradiated films rapidly causes them to decay and causes the formation of individual fine particles of round shape, larger particles of irregular shape are formed when irradiated films are annealed, while the changes themselves occur significantly more slowly.
relaxation processes photoactivation, extinction spectra, granular metallic films, nanostructures
Acknowledgements:This work was carried out as part of State Contract 02.740.11.0536.
OCIS codes: 260.0260, 1000.10000
References:1. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Introduction to Surface Physics (Nauka, Moscow, 2006).
2. J. A. Venables, G. D. T. Spiller, and M. Hanbücken, “Nucleation and growth of thin films,” Rep. Prog. Phys. 47, 399 (1984).
3. Q. Fu and T. Wagner, “Interaction of nanostructured metal overlayers with oxide surfaces,” Surf. Sci. Rep. 62, 431 (2007).
4. C. R. Henry, “Morphology of supported nanoparticles,” Prog. Surf. Sci. 80, 92 (2005).
5. N. B. Leonov, S. G. Przhibel’skiĭ, and T. A. Vartanyan, “Reversible relaxation of the shape of metal nanoparticles and its light-induced acceleration,” Pis’ma Zh. Eksp. Teor. Fiz. 91, 136 (2010) [JETP Lett. 91, 125 (2010)].
6. N. J. Simrick, J. A. Kilner, and A. Atkinson, “Thermal stability of silver thin films on zirconia substrates,” Thin Solid Films 520, 2855 (2012).
7. H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence of the thermal stability of silver thin films,” Appl. Phys. Lett. 81, 4287 (2002).
8. Lv. Jing, F. Lai, L. Lin, Y. Lin, Zh. Huang, and R. Chen, “Thermal stability of Ag films in air prepared by thermal evaporation,” Appl. Surf. Sci. 253, 7036 (2007).
9. É. I. Tochitskiĭ, Crystallization and Heat Treatment of Solid Films (Izd. Nauka i Tekhnika, Minsk, 1976).
10. V. M. Ivlev, L. I. Trusov, and V. A. Kholmyanskiĭ, Structural Transformation in Thin Films (Metallurgiya, Moscow, 1988).
11. K. H. Bevan, W. Zhu, H. Guo, and Zh. Zhang, “Terminating surface electromigration at the source,” Phys. Rev. Lett. 106, 156404 (2011).
12. K. N. Tu, “Recent advances on electromigration in very-large-scale integration of interconnects,” J. Appl. Phys. 94, 5451 (2003).
13. W. W. Mullins, “Theory of thermal grooving,” J. Appl. Phys. 28, 333 (1957).
14. A. M. Bonch-Bruevich, T. A. Vartanyan, Yu. N. Maksimov, S. G. Przhibel’skiĭ, and V. V. Khromov, “Photodetachment of atoms from the continuous surface of a metal,” Zh. Eksp. Teor. Fiz. 97, 1761 (1990) [Sov. Phys. JETP 70, 993 (1990)].
15. W. Hoheisel, M. Vollmer, and F. Trager, “Desorption of metal atoms with laser light: Mechanistic studies,” Phys. Rev. B 48, 17463 (1993).
16. N. Combe, P. Jensen, and A. Pimpinelli, “Changing shapes in the nanoworld,” Phys. Rev. Lett. 85, 110 (2000).
17. R. L. Schwoebel, “Step motion on crystal surfaces. II,” J. Appl. Phys. 40, 614 (1969).