УДК: 536.421
Controllable grain-boundary displacement during recrystallization and the microrelief of a titanium surface induced by laser radiation pulses
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Макин В.С., Пестов Ю.И., Привалов В.Е. Управляемое перемещение границ зерен при рекристаллизации и микрорельеф поверхности титана , индуцированные импульсами лазерного излучения // Оптический журнал. 2013. Т. 80. № 2. С. 29–34.
Makin V.S., Pestov Yu.I., Privalov V.E. Controllable grain-boundary displacement during recrystallization and the microrelief of a titanium surface induced by laser radiation pulses [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 2. P. 29–34.
V. S. Makin, Yu. I. Pestov, and V. E. Privalov, "Controllable grain-boundary displacement during recrystallization and the microrelief of a titanium surface induced by laser radiation pulses," Journal of Optical Technology. 80(2), 91-95 (2013). https://doi.org/10.1364/JOT.80.000091
When multipulse laser-induced recrystallization of a titanium surface occurs under the action of polarized radiation, grain growth is detected, associated with the polarization direction of the radiation. An explanation of the observed phenomenon is given, based on the effect of electron entrainment by surface plasmon-polaritons excited at the grain boundaries.
polarized laser radiation, electron entrainment by surface plasmon-polaritons, recrystallization
Acknowledgements:The authors are grateful to V. N. Petrov for making measurements of the nanorelief of the irradiated titanium surface, using an atomic-force microscope. This work was carried out with the partial financial support of Federal Special Program “Scientific and Scientific-Pedagogical Staffs of Innovation of Russia, 2009–2013,” Contract No. 16.740.11.0463 and Project No. 09-02-00932 of the Russian Foundation for Basic Research.
OCIS codes: 350.5340, 50.3390
References:1. A. I. Olemskoĭ, Synergetics of Complex Systems (Kasandr, Moscow, 2009).
2. S. Schmidt, S. F. Nielson, C. Gundlach, L. Margulies, X. Huang, and J. D. Juul, “Watching the growth of bulk grains during recrystallization of deformed metals,” Science 305, 229 (2004).
3. C. S. Han-Riege and C. V. Thompson, “Microstructural evolution induced by scanned laser annealing in Al interconnects,” Appl. Phys. Lett. 75, 1464 (1999).
4. P. B. Johnson and R. W. Christy, “Optical constants of the transition metals: Ti, V, Cr, Mn, Fe, Ni, and Pd,” Phys. Rev. B 9, 5056 (1974).
5. J. R. Samblse, “Grain-boundary scattering and surface-plasmon attenuation in noble-metal films,” Solid State Commun. 49, 343 (1984).
6. M. N. Libenson, A. M. Bonch-Bruevich, and V. S. Makin, “Surface polaritons and powerful radiation action,” Usp. Fiz. Nauk 155, 719 (1988) [Sov. Phys. Usp. 31, 772 (1988)].
7. K. Hiroyuki and T. Ishihara, “Surface-plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20, 1561 (2012).
8. A. P. Gulyaev, Physical Metallurgy (Mashinostroenie, Moscow, 1986).
9. Ya. E. Geguzin and N. N. Ovcharenko, “Surface energy and surface processes in solids,” Usp. Fiz. Nauk 76, 283 (1962) [Sov. Phys. Usp. 5, 129 (1962)].
10. D. Chiappe, A. Toma, and F. B. de Mongeo, “Tailoring resistivity anisotropy of nanorippled metal films: electron surfing on gold waves,” Phys. Rev. B 86, 045414 (2012).
11. V. S. Makin and R. S. Makin, “Lateral relativistic electron beam synergetic creation and transport by petawatt laser radiation,” in Proceedings of International Conference Days on Diffraction, May 30–June 3, 2011, St-Petersburg, Russia, pp. 133–136.
12. M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80, 1346 (2006).
13. A. Y. Vorobyev and C. L. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253, 7272 (2007).
14. T. Shinonaga, M. Tsukamoto, S. Mariyama, N. Matsushita, T. Wada, X. Wang, H. Honda, M. Fujita, and N. Abe, “Femtosecond and nanosecond laser irradiation for microstructure formation on bulk metallic glass,” Trans. JWRI 38, No. 1, 81 (2009).
15. V. V. Zhakhovskiĭ, N. A. Inogamov, and K. Nishihara, “New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse,” Pis’ma Zh. Eksp. Teor. Fiz. 87, 491 (2008) [JETP Lett. 87, 423 (2008)].