УДК: 535.417
Technique for expanding lateral-shearing interferograms, based on the use of an expansion of the wave-front function in Chebyshev polynomials
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Родионов А.Ю., Курнель Г.И., Маркин В.А., Шехтман В.Н., Ширин А.С. Методика расшифровки интерферограмм бокового сдвига, основанная на использовании разложения функции волнового фронта по полиномам Чебышева // Оптический журнал. 2013. Т. 80. № 2. С. 3–11.
Rodionov A.Yu., Kurnel G.I., Markin V.A., Shekhtman V.N., Shirin A.S. Technique for expanding lateral-shearing interferograms, based on the use of an expansion of the wave-front function in Chebyshev polynomials [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 2. P. 3–11.
A. Yu. Rodionov, G. I. Kurnel’, V. A. Markin, V. N. Shekhtman, and A. S. Shirin, "Technique for expanding lateral-shearing interferograms, based on the use of an expansion of the wave-front function in Chebyshev polynomials," Journal of Optical Technology. 80(2), 70-76 (2013). https://doi.org/10.1364/JOT.80.000070
This paper proposes a technique for expanding lateral-shearing interferograms, based on a representation of the desired wave-front function in the form of a finite expansion series in orthogonal Chebyshev polynomials. The information losses accompanying the recording and interpretation of the shearing interferograms are analyzed, along with a way of reducing them. An iteration procedure is considered for finding the wave-front function from known difference functions, using the genetic algorithm. Its efficiency is demonstrated, using test calculations as an example.
lateral shearing, shearing interferometer, genetic algorithm
OCIS codes: 120.3180
References:1. D. Malacara, ed., Optical Shop Testing (Wiley & Sons, New York, 1992; Mashinostroenie, Moscow, 1985).
2. V. N. Shekhtman, A. Yu. Rodionov, and A. G. Pel’menev, “Reconstruction of the wave front of a light beam by a synthesized shearing interference pattern,” Opt. Spektrosk. 76, 988 (1994) [Opt. Spectrosc. 76, 884 (1994)].
3. V. N. Shekhtman, A. Yu. Rodionov, and A. G. Pel’menev, “Complete reconstruction of the wave front of a light beam using a synthesized shearing interferogram,” Opt. Spektrosk. 79, 134 (1995) [Opt. Spectrosc. 79, 124 (1995)].
4. C. Elster and I. Weingartner, “Solution to the shearing problem,” Appl. Opt. 38, 5024 (1999).
5. M. Servin, D. Malacara, and J. L. Marroquin, “Wave-front recovery from two orthogonal sheared interferograms,” Appl. Opt. 35, 4343 (1996).
6. C. Elster and I. Weingartner, “Exact wave-front reconstruction from two lateral-shearing interferograms,” J. Opt. Soc. Am. A 16, 2281 (1999).
7. Z. Yin, “Exact wavefront recovery with tilt from lateral-shear interferograms,” Appl. Opt. 48, 2760 (2009).
8. G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral-shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35, 6162 (1996).
9. S. Okuda, T. Nomura, K. Kamiya, H. Miyashiro, K. Yoshikawa, and H. Tashiro, “High-precision analysis of a lateral-shearing interferogram by use of the integration method and polynomials,” Appl. Opt. 39, 5179 (2000).
10. C. Elster, “Exact two-dimensional wave-front reconstruction from lateral-shearing interferograms with large shears,” Appl. Opt. 39, 5353 (2000).
11. V. V. Emel’yanov, V. V. Kureĭchik, and V. M. Kureĭchik, Theory and Practice of Evolution Modelling (Fizmatlit, Moscow, 2003).