ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Steady-state multiple dark spatial solitons in closed-circuit photovoltaic media

For Russian citation (Opticheskii Zhurnal):

Y. H. Zhang, X. H. Hu, K. Q. Lu, B. Y. Liu, W. Y. Liu, R. L. Guo Steady-state multiple dark spatial solitons in closed-circuit photovoltaic media (Стационарные множественные темные пространственные солитоны в фотогальванических средах с замкнутым электрическим контуром) [на англ. яз.] // Оптический журнал. 2013. Т. 80. № 3. С. 13–21.

 

Y. H. Zhang, X. H. Hu, K. Q. Lu, B. Y. Liu, W. Y. Liu, R. L. Guo Steady-state multiple dark spatial solitons in closed-circuit photovoltaic media (Стационарные множественные темные пространственные солитоны в фотогальванических средах с замкнутым электрическим контуром) [in English] // Opticheskii Zhurnal. 2013. V. 80. № 3. P. 13–21.

For citation (Journal of Optical Technology):

Y. H. Zhang, X. H. Hu, K. Q. Lu, B. Y. Liu, W. Y. Liu, and R. L. Guo, "Steady-state multiple dark spatial solitons in closed-circuit photovoltaic media," Journal of Optical Technology. 80(3), 135-141 (2013). https://doi.org/10.1364/JOT.80.000135

Abstract:

We theoretically study the formation of the steady state multiple dark photovoltaic solitons in the closed-circuit photovoltaic photorefractive crystal. The results indicate that the formation of the multiple dark photovoltaic solitons in the closed-circuit photovoltaic crystal is dependent on the initial width of the dark notch at the entrance face of the crystal. The number of the solitons generated increases with the initial width of the dark notch. If the initial width of the dark notch is small, only a fundamental soliton or Y-junction soliton pair is generated. As the initial width of the dark notch is increased, the dark notch tends to split into an odd (or even) number of multiple dark photovoltaic solitons sequence, which realizes a progressive transition from a lower-order soliton to a higher-order solitons sequence. When the multiple solitons are generated, the separations between adjacent dark solitons become slightly smaller. The soliton pairs far away from the center have bigger width and less visibility and they move away from each other as they propagate in the photorefractive nonlinear crystal.

Keywords:

p hotorefractive spatial solitons, photovoltaic effect, multiple solitons splitting, beam propagation method, close-circuit condition

Acknowledgements:

This work has been supported by the National Natural Science Foundation of China under Grant no.10674176.

OCIS codes: 190.0190

References:

1. E. DelRe, B. Crosignani, and P. D. Porto, “Photorefractive spatial solitons,” in Spatial Solitons, Springer Series in Optical Sciences, 2001, vol. 82, chap. IV, pp. 61–86.
2. E. DelRe and M. Segev, “Self-focusing and solitons in photorefractive media,” Top. Appl. Phys. 114, pp. 547–572 (2009).
3. W. Królikowski, B. L. Davies, and C. Denz, “Photorefractive solitons,” IEEE J. Quantum Electron. 39, pp. 3–12 (2003).
4. C. Weilnau, M. Ahles, J. Petter, D. Träger, J. Schröder, and C. Denz, “Spatial optical 2  1-dimensional scalar- and vector-solitons in saturable nonlinear media,” Ann. Phys. 11, pp. 573–629 (2002).
5. D. Kip, C. Herden, and M. Wesner, “All-optical signal routing using interaction of mutually incoherent spatial solitons,” Ferroelectrics 274, pp. 135–142 (2002).
6. A. Guo, M. Henry, G. J. Salamo, M. Segev, and G. L. Wood, “Fixing multiple waveguides induced by photorefractive solitons: directional couplers and beam splitters,” Opt. Lett. 26, No. 16, pp. 1274–1276 (2001).
7. M. Asaro, M. Sheldon, Z. G. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in organic photo-refractive glass,” Opt. Lett. 30, No. 5, pp. 519–521 (2005).
8. Y. Lu, S. M. Liu, G. Q. Zhang, R. Guo, N. Zhu, and L. Yang, “Waveguides and directional coupler induced by white-light photovoltaic dark spatial solitons,” J. Opt. Soc. Am. B 21, No. 9, pp. 1674–1678 (2004).
9. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, No. 6, pp. R4457–R4460 (1994).
10. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, No. 4, pp. 3095–3100 (1995).
11. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y-junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, No. 13, pp. 943–945 (1996).
12. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, No. 7, pp. 1772–1778 (1997).
13. G. Q. Zhang, S. M. Liu, J. J. Xu, G. Y. Zhang, and Q. Sun, “Photorefractive spatial dark-soliton stripes in LiNbO3 :Fe crystal and their application,” Chin. Phys. Lett. 13, No. 2, pp. 101–104 (1996).
14. S. M. Liu, G. Q. Zhang, G. Y. Tian, Q. Sun, J. J. Xu, G. Y. Zhang, and Y. C. Tong, “1  1-Dimensional and 2  1-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3 :Fe crystal,” Appl. Opt. 36, pp. 8982–8986 (1997).
15. M. Chauvet, “Temporal analysis of open-circuit dark photovoltaic spatial solitons,” J. Opt. Soc. Am. B 20, No. 12, pp. 2515–2522 (2003).
16. G. Couton, H. Maillotte, and M. Chauvet, “Self-formation of multiple spatial photovoltaic solitons,” J. Opt. B: Quantum Semiclassical Opt. 6, pp. S223–S230 (2004).
17. M. Bodnar, “Dark photovoltaic spatial solitons: experiment and numerical solution,” Proc. SPIE 6582, 65821 (2007).
18. Y. H. Zhang, K. Q. Lu, J. B. Guo, K. H. Li, and B. Y. Liu, “Steady-state multiple dark photovoltaic spatial solitons,” Eur. Phys. J. D 66, No. 3, pp. 65–69 (2012).
19. Y. H. Zhang, K. Q. Lu, J. B. Guo, X. W. Long, X. H. Hu, and K. H. Li, “Formation of multiple dark photovoltaic spatial solitons,” Pramana 78, No. 2, pp. 265–275 (2012).
20. V. E. Zakharov and A. B. Shabat, “Interaction between solitons in a stable medium,” Sov. Phys. JETP 37, No. 5, pp. 823–825 (1973).
21. K. J. Blow and N. J. Doran, “Multiple dark soliton solutions of the nonlinear Schrödinger equation,” Phys. Lett. A 107, pp. 55–58 (1985).
22. S. R. Skinner, G. R. Allan, D. R. Andersen, and A. L. Smirl, “Dark spatial soliton propagation in bulk ZnSe,” IEEE J. Quantum Electron. 27, No. 9, pp. 2211–2219 (1991).
23. L. D. Barry and X. P. Yang, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett. 17, No. 7, pp. 496–498 (1992).
24. Z. G. Chen, M. Mitchell, and M. Segev, “Steady-state photorefractive soliton-induced Y-junction waveguides and high-order dark spatial solitons,” Opt. Lett. 21, No. 10, pp. 716–718 (1996).
25. Z. G. Chen, M. Segev, S. R. Singh, T. H. Coskun, and D. N. Christodoulides, “Sequential formation of multiple dark photorefractive spatial solitons: experiments and theory,” J. Opt. Soc. Am. B 14, No. 6, pp. 1407–1417 (1997).
26. Z. G. Chen and M. Segev, “Sequences of high-order dark photorefractive spatial solitons and soliton-induced waveguides formed in bulk SBN,” Proc. SPIE 2896, pp. 148–157 (1996).
27. M. M. Méndez-Otero, M. D. Iturbe-Castillo, P. Rodríguez-Montero, and E. Martí-Panameño, “High order dark spatial solitons in photorefractive Bi12 TiO20 crystal,” Opt. Commun. 193, pp. 277–282 (2001).
28. K. Q. Lu, W. Zhao, L. Zhang, K. Li, Y. Zhang, X. Liu, Y. Zhang, and J. Xu, “Temporal behavior of dark spatial solitons in closed-circuit photovoltaic media,” Opt. Commun. 281, pp. 2913–2917 (2008).