ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 53.097, 532.016, 535.15, 535.557, 537.9

How the deposition conditions of films of the oxides of semiconductors and metals affect the orientation of liquid crystals

For Russian citation (Opticheskii Zhurnal):

Амосова Л.П. Влияние условий напыления пленок окислов полупроводников и металлов на ориентацию жидких кристаллов // Оптический журнал. 2013. Т. 80. № 3. С. 68–78.

 

Amosova L.P. How the deposition conditions of films of the oxides of semiconductors and metals affect the orientation of liquid crystals [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 3. P. 68–78.

For citation (Journal of Optical Technology):

L. P. Amosova, "How the deposition conditions of films of the oxides of semiconductors and metals affect the orientation of liquid crystals," Journal of Optical Technology. 80(3), 179-186 (2013). https://doi.org/10.1364/JOT.80.000179

Abstract:

This review discusses how the main parameters of the deposition regimes of the oxides of semiconductors and metals affect the structure and relief of a precipitated film and analyzes the orientation mechanisms of liquid crystals (LCs) by means of such films. The dependence between the deposition angles, the tilt of the crystallites, and the tilt of the LC director is reported. It is shown that, when the deposition angle of the orienting film is increased relative to the substrate plane, it can be energetically favorable to make a transition either to the planar or the homeotropic orientation of the LC, depending on the film-deposition rate.

Keywords:

liquid crystals, liquid crystals orientation, oxides of semiconductors and metals, oblique deposition

Acknowledgements:

This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation under State Contract No. 11.519.11.4010.

OCIS codes: 230.3720, 160.3710

References:

1. M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid-crystal cells,” Appl. Phys. Lett. 92, 061102 (2008).
2. J. L. Janning, “Thin-film surface orientation for liquid crystals,” Appl. Phys. Lett. 21, 173 (1972).
3. O. B. Gorbunov, A. A. Mukhaev, S. P. Kurchatkin, V. P. Sevost’yanov, V. Ya. Filipchenko, and S. Kh. Finkil’shteĭn, “The orientation of liquid crystals by means of obliquely deposited films of germanium monoxide,” Neorg. Mater. 19, 467 (1983).
4. Zh. Kon’yar, Orientation of Nematic Liquid Crystals and Their Mixtures (Universitetskoe, Minsk, 1986).
5. T. Wilson, G. D. Boyd, E. H. Westerwick, and F. G. Storz, “Alignment of liquid crystals on surfaces with film deposited obliquely at low and high rates,” Mol. Cryst. Liq. Cryst. 94, 359 (1983).
6. L. A. Goodman, J. T. McGinn, C. H. Anderson, and F. Digeronomo, “Topography of obliquely evaporated silicon oxide films and its effects on liquid-crystal orientation,” IEEE Trans. Electron Devices 24, 795 (1977).

7. W. Urbach, M. Boix, and E. Guyon, “Alignment of nematics and smectics on evaporated films,” Appl. Phys. Lett. 25, 479 (1974).
8. W.-R. Liou, C.-Y. Chen, J.-J. Ho, C.-K. Hsu, C.-C. Chang, R. Y. Hsiao, and S.-H. Chang, “An improved alignment layer grown by oblique evaporation for liquid-crystal devices,” Displays 27, No. 2, 69 (2006).
9. M. Mokade, Ph. Martinot-Lagarge, G. Durand, and C. Granjean, “SiO evaporated films topography and nematic liquid-crystal orientation,” J. Phys. II France No. 7, 1577 (1997).
10. M. Mokade, M. Boix, and G. Durand, “Order electricity and oblique nematic orientation on rough solid surfaces,” Europhys. Lett. 5, 697 (1988).
11. Z. Celinski, L. Reisman, I. Harward, and A. Glushchenko, “New alignment liquid-crystal techniques for operation at harsh ambient conditions and high intensity light,” Proc. SPIE 7329, 73290 (2009).
12. E. A. Konshina, M. A. Fedorov, L. P. Amosova, and Yu. M. Voronin, “Effect of surface on phase modulation of light in a nematic layer,” Zh. Tekh. Fiz. 78, No. 2, 71 (2008) [Tech. Phys. 53, 211 (2008)].
13. L. Dong, R. W. Smith, and D. J. Srolovitz, “A two-dimensional molecular dynamics simulation of thin-film growth by oblique deposition,” J. Appl. Phys. 80, 5682 (1996).
14. J. Cheng, G. D. Boyd, and F. G. Storz, “A scanning electron microscope study of columnar topography and liquid-crystal alignment on obliquely deposited oxide surfaces at low rates,” Appl. Phys. Lett. 37, 716 (1980).
15. E. A. Konshina, N. L. Ivanova, P. S. Parfenov, and M. A. Fedorov, “Reorientation dynamics of a dual-frequency nematic liquid crystal with quasi-homeotropic structure,” Opt. Zh. 77, No. 12, 45 (2010) [J. Opt. Technol. 77, 770 (2010)].
16. Y.-P. Zhao, D.-X. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing-angle deposition,” Proc. SPIE 5219, 59 (2003).
17. R. N. Trait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196 (1993).
18. K. H. Muller, “Dependence of thin-film microstructure on deposition rate by means of a computer simulation,” J. Appl. Phys. 58, 2573 (1985).
19. S. M. Paik, S. Kim, I. K. Schuller, and R. Ramirez, “Surface kinetics and roughness on microstructure formation in thin films,” Phys. Rev. B 43, 1843 (1991).
20. C. Chen, P. J. Bos, and J. E. Anderson, “Anchoring transitions of liquid crystals on SiOx,” Liq. Cryst. 35, 465 (2008).
21. E. Dubois-Violette and P. G. de Gennes, “Effect of long-range van der Waals forces on the anchoring of a nematic fluid at an interface,” J. Colloid Interface Sci. 57, 403 (1976).
22. G. Barbero and G. Durand, “Order parameter spatial variation and anchoring energy for nematic liquid crystals,” J. Appl. Phys. 69, 6968 (1991).
23. W. R. Heffner, D. W. Berreman, M. Sammon, and S. Meiboom, “Light crystal alignment on surfactant-treated obliquely evaporated surfaces,” Appl. Phys. Lett. 36, 144 (1980).