ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 534.535, 535.33/34

Construction of adaptive spectral analyzers on the basis of acousto-optic spectrometers

For Russian citation (Opticheskii Zhurnal):

Фадеев А.В., Пожар В.Э. Построение адаптивных спектроанализаторов на основе акустооптических спектрометров // Оптический журнал. 2013. Т. 80. № 7. С. 50–57.

 

Fadeev A.V., Pozhar V.E. Construction of adaptive spectral analyzers on the basis of acousto-optic spectrometers [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 7. P. 50–57.

For citation (Journal of Optical Technology):

A. V. Fadeyev and V. E. Pozhar, "Construction of adaptive spectral analyzers on the basis of acousto-optic spectrometers," Journal of Optical Technology. 80(7), 444-449 (2013). https://doi.org/10.1364/JOT.80.000444

Abstract:

This paper discusses the problem of selecting the working spectral points in the method of selective spectral recording, used to detect contaminants in air by means of differential optical absorption spectroscopy on acousto-optic spectrometers with random spectral addressing. Reducing the number of recorded points of the spectrum, which allows the measurement time to be reduced by an order of magnitude, can simultaneously decrease the selectivity of the analysis, and this presents a problem if the composition of the impurity substances is unknown. A partial solution of the problem is proposed that consists of a preliminary study of the variations of the spectra of the gas mixture, and this makes it possible to statistically distinguish the main variable components in the composition of the gaseous mixture and to identify them with definite gases. Versions are proposed for the construction of adaptive systems based on acousto-optic spectrometers and using the technique developed here.

Keywords:

gas analysis, air pollution monitoring, acousto-optic spectrometer, random spectral addressing, differential optical absorption spectroscopy, independent components analysis, fragmentary spectral registration

Acknowledgements:

This work was carried out as part of Federal Special Program “Staffs” (Contracts P721 and 14.740.11.0143).

OCIS codes: 230.1040, 300.6190, 280.1120, 120.6200

References:

1. S. E. Harris and R. W. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744 (1969).
2. Ch. V. Gazarov, V. E. Pozhar, and V. N. Zhogun, “Acousto-optical spectrometer for air-pollution monitoring,” Proc. SPIE 2107, 143 (1993).
3. A. V. Fadeyev and V. E. Pozhar, “Application of independent component analysis method in real-time spectral analysis of gaseous mixtures for acousto-optical spectrometers based on differential optical absorption spectroscopy,” Proc. SPIE 8535, 85350C (2012).
4. V. E. Pozhar and V. I. Pustovoit, “New DOAS technique based on acousto-optic spectrometer,” Proc. SPIE 3818, 69 (1999).
5. V. I. Pustovoit and V. E. Pozhar, “Long-path optical spectral AOTF-based gas analyzer,” Proc. SPIE 4574, 174 (2001).
6. U. Platt, D. Perner, and H. W. Patz, “Simultaneous measurements of atmospheric CH2 O, O3 and NO 2 by differential optical absorption,” J. Geophys. Res. 84, 6329 (1979).

7. A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis (Wiley, New York, 2001), p. 481.
8. V. É. Pozhar and V. I. Pustovoı˘t, “Concerning the optimum algorithm for spectral chemical analysis by means of acousto-optical spectrometers,” Élektromag. Volny Élekt. Sistemy 2, No. 4, 26 (1997).
9. A. V. Fadeyev and V. E. Pozhar, “Optimization of measuring and calibration procedures for gas analyser based on acousto-optical tunable filters,” Proc. SPIE 8082, 808242 (2011).
10. M. M. Mazur, V. É. Pozhar, V. N. Shorin, and Z. A. Magomedov, “Gas analyzer,” Russian Patent No. 2095788 (1996).
11. M. M. Mazur, V. N. Shorin, V. I. Pustovoı˘t, V. É. Pozhar, and A. V. Fadeev, “Gas-analytic acousto-optic spectrometer–gas analyzer GAOS,” Prib. Tekh. Éksp. 2, 140 (2011).
12. J. Stutz and U. Platt, “Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods,” Appl. Opt. 35, 6041 (1996).
13. M. Hausmann, U. Brandenburger, T. Brauers, and H. P. Dorn, “Simple Monte-Carlo methods to estimate the spectra evaluation error in differentialoptical-absorption spectroscopy,” Appl. Opt. 38, 462 (1999).
14. P. Comon and C. Jutten, Handbook of Blind Source Separation, Independent Component Analysis and Applications (Academic Press, Oxford, 2010), Chap. 1, pp. 1–22.
15. H. H. Kim, S. H. Han, and H. D. Bae, “Separation of DOAS measurements data by independent component analysis,” Key Eng. Mater. 270, 703 (2004).
16. V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, “Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms,” Hum. Brain Mapp. 13, 43 (2001).
17. A. Hyvarinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,” Neural Comput. 9, 1483 (1997).
18. A. Bell and T. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Comput. 7, 1129 (1995).
19. J.-F. Cardoso, “High-order contrasts for independent component analysis,” Neural Comput. 11, 157 (1999).
20. Y. B. Monakhova, S. A. Astakhov, A. Kraskov, and S. P. Mushtakova, “Independent components in spectroscopic analysis of complex mixtures,” Chemom. Intell. Lab. Syst. 103, 108 (2010).
21. J. Jaumot, R. Gargallo, A. de Juan, and R. Tauler, “A graphical user-friendly interface for MCR -ALS: a new tool for multivariate curve resolution in MATLAB,” Chemom. Intell. Lab. Syst. 76, 101 (2005).
22. S. Amari, A. Cichocki, and H. Yang, “A new learning algorithm for blind signal separation,” in Advances in Neural Information Processing Systems, 1996, vol. 8, pp. 752–763.