УДК: 57.086.8
Using digital off-axis holograms to investigate changes of state of living neuronal cultures
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Рыбников А.И., Дуденкова В.В., Муравьева М.С., Захаров Ю.Н. Применение цифровых внеосевых голограмм для исследования изменений состояния живых нейронных культур // Оптический журнал. 2013. Т. 80. № 7. С. 66–73.
Rybnikov A.I., Dudenkova V.V., Muravieva M.S., Zakharov Yu.N. Using digital off-axis holograms to investigate changes of state of living neuronal cultures [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 7. P. 66–73.
A. I. Rybnikov, V. V. Dudenkova, M. S. Murav’eva, and Yu. N. Zakharov, "Using digital off-axis holograms to investigate changes of state of living neuronal cultures," Journal of Optical Technology. 80(7), 457-462 (2013). https://doi.org/10.1364/JOT.80.000457
Apparatus has been developed and assembled to obtain holograms of a living cell culture by methods of digital and analog holography. The setup demonstrates the advantages of both methods and provides convenient adjustment and monitoring of its parameters for recording a series of digital holograms. Software processing of the results makes it possible to obtain information concerning the total optical thickness of the test samples and to visualize and measure changes in living neuronal cultures. Variations of the structure and manifestations of vital activity of a primary culture of brain cells have been investigated and compared.
digital holography, holographic interferometry, primary cell cultures
Acknowledgements:The authors express gratitude to scientific fellow E. V. Mitroshina and Professor I. V. Mukhina (Nizhniı˘ Novgorod State Medical Academy) for providing the biological materials, participating in the experiment, and discussing the results.
This study was carried out with the support of the Ministry of Education and Science of the Russian Federation, Contract 8055.
OCIS codes: 090.1995, 090.2880
References:1. R. I. Freshney, Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications (Wiley, New York, 2010; Mir, Moscow, 1989).
2. M. V. Vedunova, S. A. Korotchenko, A. N. Balashova, A. I. Isakova, L. G. Khaspekov, V. B. Kazantsev, and I. V. Mukhina, “The effect of short-term glucose deprivation on the functioning of the neural network of a primary culture of the hippocampus on a multielectrode matrix,” Sovrem. Tekhnol. Med. No. 2, 7 (2011).
3. M. Françon, “Phase-contrast microscopy,” in Progress in Microscopy (Row, Peterson and Company, New York, 1961), pp. 64–93; (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1960), p. 180.
4. T. Kim, S. Sridharan, A. Kajdacsy-Balla, K. Tangella, and G. Popescu, “Gradient field microscopy for label-free diagnosis of human biopsies,” Appl. Opt. 52, No. 1, A92 (2013).
5. V. A. Andreev and K. V. Indukaev, “Phase-modulation microscope MIM-2.1 for measurements of surface microrelief. General principles of design and operation,” J. Russ. Laser Res. 26, 380 (2005).
6. L. Camacho, V. Mico, Z. Zalevsky, and J. García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755 (2010).
7. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775 (2006).
8. V. V. Lobyntseva and Yu. N. Zakharov, “Phase visualization in the study of cellular structures by confocal microscopy,” Phys. Wave Phenom. 19, No. 1, 10 (2011).
9. V. B. Konstantinov, V. A. Babenko, and A. F. Malyı˘, “Holographic interference microscope for laboratory studies,” Zh. Tekh. Fiz. 77, No. 12, 92 (2007) [Tech. Phys. 52, 1623 (2007)].
10. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
11. M. K. Kim, Y. Hayasaki, P. Picart, and J. Rosen, eds., Feature issue on “Digital Holography and 3D Imaging,” Appl. Opt. 52, A1–A440 (2013).
12. V. I. Redkorechev, I. A. Kulagin, V. S. Gurevich, M. E. Gusev, and Yu. N. Zakharov, “Picosecond three-color holographic digital interferometry,” Opt. Spektrosk. 107, 407 (2009) [Opt. Spectrosc. 107, 407 (2009)].
13. V. S. Gurevich, V. E. Gaponov, V. I. Redkorechev, and Yu. N. Zakharov, “Measuring the parameters of surface acoustic waves in crystals by a holographic method,” Izv. Vyssh. Uchebn. Zaved. Mat. Élektron. Tekh. No. 1, 26 (2012).
14. B. Rappaz, P. Marquet, E. Cuche, Yv. Emery, Ch. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361 (2005).
15. B. Rappaz, Ch. Depeursinge, and P. Marquet, “Digital holographic microscopy (DHM) for measuring biophysical parameters of living cells,” in Biomedical Optical Phase Microscopy and Nanoscopy, N. T. Shaked, Z. Zalevsky, and L. L. Sattewhite, ed. (Elsevier, 2013), Chap. 5, pp. 71–95.
16. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971; Mir, Moscow, 1973).
17. I. Alexeenko, M. Gusev, and V. Gurevich, “Separate recording of rationally related vibration frequencies using digital stroboscopic holographic interferometry,” Appl. Opt. 48, 3475 (2009).
18. W. Nadeborn, P. Andra, and W. Osten, “A robust procedure for absolute phase measurement,” Opt. Lasers Eng. 24, 245 (1996).
19. S. L. Marple, Jr., Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Clis, N.J., 1987; Mir, Moscow, 1990), pp. 53–57.
20. Yu. N. Zakharov, E. V. Mitroshina, M. V. Vedunova, S. A. Korotchenko, Ya. I. Kalintseva, A. V. Potanina, and I. V. Mukhina, “Fluorescence analysis of the metabolic activity patterns of a neuronalglial network,” Opt. Zh. 79, No. 6, 47 (2012) [J. Opt. Technol. 79, 348 (2012)].
21. Yu. N. Zakharov and S. N. Mensov, “Using Fabry–Perot scanning interferometers in problems of the recording of fast processes,” Zh. Tekh. Fiz. 52, 992 (1982) [Sov. Phys. Tech. Phys. 27, 632 (1982)].
22. Yu. N. Zakharov, Yu. M. Sorokin, and F. G. Suchkin, “Multiplex kinoholograms of the evolution of optical discharge,” in Using the Methods of Holography in Science and Engineering (FTI im. Ioffe, Leningrad, 1987), pp. 78–82.
23. Yu. N. Zakharov and Yu. M. Sorokin, “Millisecond kinoholography of a collective optical discharge,” Opt. Atmos. 2, No. 2, 180 (1989).
24. E. V. Mitroshina, M. V. Vedunova, A. A. Mironov, T. A. Sakharnova, A. S. Pimashkin, M. Yu. Bobrov, L. G. Khaspekov, and I. V. Mukhina, “Neural protector action of the cannabinoid N-arachidonoyl dopamine with modelling of acute hypobaric hypoxia of the brain,” Neı˘rolog. Vest. 44, No. 1, 14 (2012).