УДК: 535.417.26
A system for matching the spectrum of injected single-frequency radiation with the cavity eigenfrequencies of a pulsed laser
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лоншаков Е.А., Квашнин Н.Л., Бордзиловский Д.С., Струц С.Г., Тарасов В.М., Майоров А.П., Дмитриев А.К. Система согласования спектра инжектируемого одночастотного излучения с собственными частотами резонатора импульсного лазера // Оптический журнал. 2013. Т. 80. № 7. С. 74–77.
Lonshakov E.A., Kvashnin N.L., Bordzilovskiy D.S., Struts S.G., Tarasov V.M., Maiyorov A.P., Dmitriev A.K. A system for matching the spectrum of injected single-frequency radiation with the cavity eigenfrequencies of a pulsed laser [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 7. P. 74–77.
E. A. Lonshakov, N. L. Kvashnin, D. S. Bordzilovsky, S. G. Struts, V. M. Tarasov, A. P. Mayorov, and A. K. Dmitriev, "A system for matching the spectrum of injected single-frequency radiation with the cavity eigenfrequencies of a pulsed laser," Journal of Optical Technology. 80(7), 463-465 (2013). https://doi.org/10.1364/JOT.80.000463
A method for automatically setting the cavity eigenfrequencies of a pulsed laser to the emission frequency of a continuous single-frequency master oscillator has been developed and investigated. The operating principle of the given system is explained, and the results of a study of how it affects the characteristics of the radiation of a pulsed laser are presented. The system described here can be used to stabilize the process of single-frequency lasing of a pulsed laser with the injection of an external signal and to reduce the jitter of the light pulses by a factor of 2 and the scatter of their amplitude by a factor of more than 3.
resonator tuning, single-frequency laser, laser with external signal, resonators matching
OCIS codes: 140.3570, 140.4780
References:1. Y. K. Park, G. Giuliani, and R. L. Bayer, “Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking,” Opt. Lett. 5, No. 3, 96 (1980).
2. Z. Liu, S. Wu, and B. Liu, “Seed injection and frequency-locked Nd:YAG laser for direct-detection wind lidar,” Opt. Laser Technol. 39, 541 (2007).
3. T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, and A. Nomura, “Sodium temperature lidar based on injection-seeded Nd:YAG pulse lasers using a sum-frequency generation technique,” Opt. Express 19, 3553 (2011).
4. V. V. Antsiferov, N. S. Erokhin, and A. P. Fadeev, “Powerful single-frequency tunable lasers based on ruby and on neodymium with electrooptic Q-switching,” Rotaprint IKI AN SSSR No. 987, Moscow, 1984.
5. W. Koechner, “Axial mode control injection-seeded oscillator,” in Solid-State Laser Engineering, A. L. Schawlow, A. E. Siegman, and T. Tamir, eds. (Springer Limited, London, 1999), pp. 257–259.
6. M. N. Skvortsov, M. V. Okhapkin, A. Yu. Nevskiı˘, and S. N. Bagaev, “Optical frequency standard based on a Nd:YAG laser stabilized by saturated absorption resonances in molecular iodine using second-harmonic radiation,” Kvant. Elektron. (Moscow) 34, 1101 (2004) [Quantum Electron. 34, 1101 (2004)].