УДК: 535.2, 535.4
The transmission of 45 bits of information by a pair of interfering femtosecond pulses with superwide spectra
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Цыпкин А.Н, Путилин С.Э., Мельник М.В., Клыков С.С., Козлов С.А. Передача 45 бит информации парой интерферирующих фемтосекундных импульсов со сверхширокими спектрами // Оптический журнал. 2013. Т. 80. № 7. С. 78–82.
Tsypkin A.N., Putilin S.E., Melnik M.V., Klykov S.S., Kozlov S.A. The transmission of 45 bits of information by a pair of interfering femtosecond pulses with superwide spectra [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 7. P. 78–82.
A. N. Tsypkin, S. É. Putilin, M. V. Mel’nik, S. A. Kozlov, and S. S. Klykov, "The transmission of 45 bits of information by a pair of interfering femtosecond pulses with superwide spectra," Journal of Optical Technology. 80(7), 466-469 (2013). https://doi.org/10.1364/JOT.80.000466
It has been experimentally demonstrated that 45 bits of information can be optically recorded and transmitted by one quasi-discrete spectral supercontinuum, formed when two femtosecond pulses with superwide spectra interfere with a time delay between them less than the width of each pulse.
femtosecond pulse, spectral supercontinuum, coherence time, Michelson interferometer, information recording, information transmission
Acknowledgements:The authors are grateful to Doctor of Physicomathematical Sciences Victor Sergeevich Shevandin for providing the MS-38 microstructured fiber.
This work was carried out with the support of the Ministry of Education and Science of the Russian Federation, Contract Nos. 14.B37.21.0248, 14.132.21.1392, 14.B37.21.0907, Grant Nos. 16.740.11.0459 and Russian Foundation for Basic Research No. 12-02-31633.
OCIS codes: 190.7110, 200.3050
References:1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, No. 1, 25 (2000).
3. H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” Chem. Phys. Chem. 8, 279 (2007).
4. J. M. Dudley and S. Coen, “Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber,” Opt. Express 12, 2423 (2004).
5. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800 (2002).
6. M. A. Bakhtin and S. A. Kozlov, “Generation of the discrete spectral supercontinuum in two intensive ultrashort pulses interaction,” Opt. Mem. Neural Networks 15, No. 1, 1 (2006).
7. S. A. Kozlov, A. A. Drozdov, and A. N. Tsypkin, “Device for forming a sequence of femtosecond light pulses,” Russian Patent No. 87058 (2009).
8. N. R. Belashenkov, A. A. Drozdov, S. A. Kozlov, Yu. A. Shpolyanskiı˘, and A. N. Tsypkin, “Phase modulation of femtosecond light pulses whose spectra are superbroadened in dielectrics with normal group dispersion,” Opt. Zh. 75, No. 10, 3 (2008) [J. Opt. Technol. 75, 611 (2008)].
9. R. R. Alfano, “Method and apparatus for producing a multiple optical channel source from a supercontinuum generator for WDM communication,” U.S. Patent No. 7245805 (2007).
10. C. Corsi, A. Tortora, and M. Bellini, “Mutual coherence of supercontinuum pulses collinearly generated in bulk media,” Appl. Phys. B 77, No. 2–3, 285 (2003).