УДК: 535.417
Aberrations of a volume holographic optical element obtained by means of a cylindrical object wave and a spherical reference wave
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Батомункуев Ю.Ц. Аберрации объемного голограммного оптического элемента, полученного с помощью цилиндрической объектной и сферической опорной волн // Оптический журнал. 2013. Т. 80. № 8. С. 31–36.
Batomunkuev Yu. Ts. Aberrations of a volume holographic optical element obtained by means of a cylindrical object wave and a spherical reference wave [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 8. P. 31–36.
Yu. Ts. Batomunkuev, "Aberrations of a volume holographic optical element obtained by means of a cylindrical object wave and a spherical reference wave," Journal of Optical Technology. 80(8), 490-494 (2013). https://doi.org/10.1364/JOT.80.000490
This paper presents expressions that make it possible to calculate the third- and fifth-order aberrations of a volume holographic optical element (HOE) recorded by means of a cylindrical reference wave and a spherical object wave. It is shown that the aberration coefficients of this volume element can be represented as a sum of the monochromatic and chromatic aberration coefficients, as well as the aberration coefficients that result from the photoinduced, thermally induced, and strain variations of its refractive index and dimensions. It is pointed out that the selectivity of a volume HOE reduces its aberrations by comparison with the corresponding aberrations of a thin HOE.
OCIS codes: 090.0090, 090.1000, 090.2890
References:1. Yu. N. Denisyuk, “Imaging the optical properties of an object in the wave field of the radiation scattered by it,” Opt. Spektrosk. 15, 552 (1963) [Opt. Spectrosc. (USSR) 15, 279 (1963)].
2. M. R. B. Forshaw, “The imaging properties and aberrations of thick transmission holograms,” Opt. Acta 20, 669 (1973).
3. M. A. Gan, Theory and Methods of Calculating Holographic and Kinoform Optical Elements (GOI, Leningrad, 1984).
4. I. A. Mikhaı˘lov, “Geometrical analysis of thick holograms,” Opt. Spektrosk. 58, 612 (1985) [Opt. Spectrosc. (USSR) 58, 374 (1985)].
5. Yu. Ts. Batomunkuev, E. A. Sander, and S. A. Shoı˘din, “The aberrations of volume holograms,” in Abstracts of the All-Union Seminar on Automation of the Design of Optical Systems (October 26–28, 1988, Moscow), 1989, pp. 101–112.
6. S. N. Koreshev and G. B. Semenov, “Forming astigmatic wave fronts by holography,” Opt. Spektrosk. 48, 968 (1980) [Opt. Spectrosc. (USSR) 48, 531 (1980)].
7. Yu. Ts. Batomunkuev, “Theory of the calculation of chromatic aberrations of an x-ray holographic axial element,” in Collection of Materials of the Seventh International Scientific Congress GEO-Siberia-2011, Novosibirsk, 2011, vol. 5, part 2, pp. 154–160.
8. J. N. Latta, “Fifth-order hologram aberrations,” Appl. Opt. 10, 666 (1971).
9. P. S. Mehta, “Fifth-order aberrations in in-line holograms,” Opt. Acta 21, 1005 (1974).
10. S. T. Bobrov, G. I. Greı˘sukh, and Yu. G. Turkevich, The Optics of Diffraction Elements and Systems (Mashinostroenie, Leningrad, 1986).
11. Yu. Ts. Batomunkuev, “Mirror-lens model of volume holographic optical elements,” Opt. Zh. 76, No. 7, 48 (2009) [J. Opt. Technol. 76, 413 (2009)].
12. S. N. Koreshev, “Holographic interferometer for noncontact monitoring of cylindrical surfaces,” Opt. Spektrosk. 56, 356 (1984) [Opt. Spectrosc. (USSR) 56, 218 (1984)].
13. R. R. Gerke, S. N. Koreshev, G. B. Semenov, and V. V. Smirnov, “Holographic optics at S. I. Vavilov state optical institute,” Opt. Zh. 61, No. 1, 26 (1994) [J. Opt. Technol. 61, 20 (1994)].
14. Yu. Ts. Batomunkuev and N. A. Meshcheryakov, “A holographic level,” Vestnik SGGA No. 10, 177 (2005).
15. V. A. Soı˘fer, Diffraction Computer Optics (Fizmatlit, Moscow, 2007).