ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.243 + 615.471 + 681.7

Mathematical modelling of signals recorded in noninvasive medical laser fluorescence diagnosis

For Russian citation (Opticheskii Zhurnal):

Рогаткин Д.А., Смирнова О.Д. Математическое моделирование регистрируемых сигналов в медицинской лазерной неинвазивной флюоресцентной диагностике // Оптический журнал. 2013. Т. 80. № 9. С. 54–60.

Rogatkin D. A. and Smirnova O. D. Mathematical modelling of signals recorded in noninvasive medical laser fluorescence diagnosis [in Russian] // Opticheskii Zhurnal. 2013. V. 80. №9. P. 54–60.

For citation (Journal of Optical Technology):

D. A. Rogatkin and O. D. Smirnova, "Mathematical modelling of signals recorded in noninvasive medical laser fluorescence diagnosis," Journal of Optical Technology. 80(9), 566-570 (2013). https://doi.org/10.1364/JOT.80.000566

Abstract:

Based on the Kubelka–Munk two-flux model modified by the authors, which makes it possible in one-dimensional problems to obtain exact analytical expressions for radiation fluxes at the boundary of a turbid medium, and Kokhanovsky’s solution for the radiation flux of fluorescence, questions are considered of modelling the spectrum of stimulated endogenous fluorescence of biological tissues as applied to problems of noninvasive medical diagnosis. An analytical expression is presented for the spectral distortion function, which depends on the scattering and absorption properties of cellular biological tissues and blood. It is shown that the model spectra agree well with the experimental data.

Keywords:

fluorescence, medical laser diagnostics, non-invasive fluorescence diagnostics, munch goblet model

OCIS codes: 170.6280, 170.6510.

References:

1. V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).
2. M. A. Mycek and B. W. Pogue, Handbook of Biomedical Fluorescence (Marcel Dekker Inc., New York, 2003).
3. F. Leblond, S. Davis, P. Valdes, and B. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010).
4. P. Bonfert-Taylor, F. Leblond, R. Holt, K. Tichauer, B. Pogue, and E. Taylor, “Information loss and reconstruction in diffuse fluorescence tomography,” J. Opt. Soc. Am. A 29, 321 (2012).
5. D. A. Rogatkin, “Instrumental and methodological errors of measurements in noninvasive medical spectrophotometry,” in Materials of the Third Eurasian Congress with Respect to Medical Physics and Engineering, Medical Physics-2010 (MGU, Moscow, 2010), pp. 38–41.
6. W. J. M. Putten and M. J. C. Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639 (1983).
7. D. Rogatkin, V. Svirin, and G. Hachaturyan, “The theoretical model for fluorescent field calculation in nonhomogeneous and scattering biological tissues,” Proc. SPIE 3563, 125 (1998).
8. D. A. Rogatkin and V. V. Tchernyi, “Mathematical simulation as a key point of the laser fluorescence diagnostic technique in oncology,” Proc. SPIE 4059, 73 (2000).
9. E. Baraghis, A. Devor, Q. Fang, V. Srinivasan, W. Wu, D. Boas, S. Sakadzic, F. Lesage, C. Ayata, and K. Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
10. S. Kanick, D. Robinson, C. Sterenborg, and A. Amelink, “Extraction of intrinsic from single-fiber fluorescence measurements on a turbid medium,” Opt. Lett. 37, 948 (2012).
11. A. A. Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 26, 1896 (2009).
12. D. A. Rogatkin, “On a feature in determining the optical properties of turbid biological tissues and media in calculational problems of medical noninvasive spectrophotometry,” Medits. Tekhn. No. 2, 10 (2007).
13. A. R. Subbotin, T. A. Savel’eva, and S. A. Goryaı˘nov, “Algorithm for processing the fluorescence spectra of protoporphyrin IX and the endogenous fluorophores in glial tumors of the brain,” in Collection of the Materials of the Fifth Troitsk Conference on Medical Physics and Innovation in Medicine, Troitsk, 2012, vol. 1, pp. 268–269.
14. D. A. Rogatkin, L. G. Lapaeva, E. N. Petritskaya, V. V. Sidorov, and V. I. Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
15. GOST 9411–75, “Optical colored glass,” Izd. Standartov, Moscow, 1976.
16. D. A. Rogatkin, “Physical principles of optical oximetry,” Medits. Fiz. No. 2, 97 (2012).